
Modelling Standard

Version: 4.2 (1.A)
Document number: Eu.Doc.30

© EULYNX Partners

Contents

1 1Introduction

1.1 1Release information

1.2 1Impressum

1.3 1Purpose

1.3.1 1About this Modelling Standard

1.3.2 2Audience

1.4 2Terms and abbreviations

1.5 2Related documents

2 2Abbreviations

3 4Introduction

3.1 4Motivation

3.2 5Structure of the Modelling Standard

4 6MBSE Specification Framework

5 9Modelling Language

5.1 9Systems Modeling Language (SysML)

5.2 9Action Language

5.2.1 10The role of data types

6 10Tools

7 10User Requirements

7.1 10Overview

7.2 11Safety requirements

7.3 11Formulation of user requirements

8 12Architecture Model MBSE

8.1 14Overview of the EULYNX MBSE methodology

8.1.1 14Characteristics of EULYNX subsystems

8.1.1.1 14System

8.1.1.2 15Reactive system

8.1.1.3 15Control system

8.1.1.4 15Typical control loop of a EULYNX subsystem

8.1.1.5 17Interpretation of the concept of "Function"

8.1.2 18Principle of model-based definition of requirements

8.1.2.1 18Applied description methods for model-based requirements

8.1.2.1.1 18Operational specification

8.1.2.1.2 19Stimulus-response specification

Modelling Standard Table of Contents

© EULYNX Partners i

8.1.2.1.3 21Description method using use case scenarios

8.1.2.1.4 25Description method using state machines

8.1.3 26Overview introduction to the EULYNX MBSE Process

8.1.3.1 34Engineering path SUS

8.1.3.2 38Engineering path SIUS

8.2 40Model views - General modelling rules

8.2.1 43Binding nature of the requirements and their structuring

8.2.2 44Modelling Pattern for interlocking systems

8.2.3 47Introduction of the basic structural model elements

8.2.3.1 47Logical Structural Entity (LSE)

8.2.3.2 48Functional Entity (FE)

8.2.3.3 48Environmental Structural Entity (ESE)

8.2.3.4 48Technical Structural Entity (TSE) or Technical Functional Entity (TFE)

8.2.3.5 49Information objects

8.2.4 49Interface centric specification

8.2.5 50Functional packages

8.3 50Model views used to specify EULYNX subsystems

8.3.1 51Model View ''Functional Context'' of a SUS (AL1) - Description

8.3.2 52Model View ''Functional Context'' of a SUS (AL1) - Modelling rules

8.3.2.1 52SysML Diagram

8.3.2.2 53Model elements

8.3.2.3 55Binding (see chapter 8.2.1)

8.3.3 55Model View ''Use case scenario'' of a SUS (AL1) - Description

8.3.4 56Model View ''Use case scenario'' of a SUS (AL1) - Modelling rules

8.3.4.1 56SysML diagram

8.3.4.2 59SysML model elements

8.3.4.3 74Binding (see chapter 8.2.1)

8.3.5 74Model View ''Logical Context'' of a SUS (AL1) - Description

8.3.6 76Model view ''Logical Context'' of a SUS (AL1) - Modelling rules

8.3.6.1 76SysML diagram

8.3.6.2 76Model elements

8.3.6.3 77Binding (see chapter 8.2.1)

8.3.7 77Model view "Functional Partitioning" of a SUS (AL2) - Description

8.3.8 78Model view "Functional Partitioning" of a SUS (AL2) - Modelling rules

8.3.8.1 78SysML diagram

8.3.8.2 79Model Elements

8.3.8.3 79Binding (see chapter 8.2.1)

8.3.9 79Model view "Functional Architecture" of a SUS (AL2) - Description

8.3.10 81Model view "Functional Architecture" of a SUS (AL2) - Modelling rules

8.3.10.1 81SysML diagram

8.3.10.2 81Model elements

8.3.10.3 82Binding (see chapter 8.2.1)

Modelling Standard Table of Contents

© EULYNX Partners ii

8.3.11 82Model view "Technical Functional Architecture" of a SUS (AL2) - Description

8.3.12 84Model view "Technical Functional Architecture" of a SUS (AL2) - Modelling rules

8.3.12.1 84SysML diagram

8.3.12.2 84Model elements

8.3.12.3 85Bindings (see chapter 8.2.1)

8.4 85Model views used to specify EULYNX interfaces

8.4.1 86Model view "Logical Context" of a SIUS (AL1) - Description

8.4.2 87Model view ''Logical Context'' of a SIUS (AL1) - Modelling rules

8.4.2.1 87SysML diagram

8.4.2.2 87Model elements

8.4.2.3 87Bindings (see chapter 8.2.1)

8.4.3 87Model view "Functional Partitioning" of a SIUS (AL2) - Description

8.4.4 88Model view "Functional Partitioning" of a SIUS (AL2) - Modelling rules

8.4.4.1 88SysML diagram

8.4.4.2 88Model elements

8.4.4.3 88Bindings (see chapter 8.2.1)

8.4.5 88Model view "Functional Architecture" of a SIUS (AL2) - Description

8.4.6 89Model view "Functional Architecture" of a SIUS (AL2) - Modelling rules

8.4.6.1 89SysML diagram

8.4.6.2 89Model elements

8.4.6.3 89Bindings (see chapter 8.2.1)

8.4.7 89Model view "Information Flow" of a SIUS (AL2) - Description

8.4.8 91Model view "Information Flow" of a SUS - Modelling Rules

8.4.8.1 91SysML diagram

8.4.8.2 91Model elements

8.4.8.3 91Bindings (see chapter 8.2.1)

8.5 92Model views "Functional Entity" and "Technical Functional Entity" - Description

8.6 92Model views "Functional Entity" and "Technical Functional Entity" - Modelling rules

8.6.1 92SysML Diagram

8.6.2 93Block

8.6.3 93Model elements - Block properties

8.6.4 94Model elements - Block operations

8.6.4.1 94Internal broadcast events

8.6.4.2 95Definition of algorithms for data transformation

8.6.4.2.1 95Call behaviour

8.6.4.2.2 95Time advance behaviour

8.6.5 95Model elements - Ports

8.6.5.1 95Atomic SysML in ports and out ports

8.6.5.2 97SysML proxy ports to describe a signal-based communication

8.6.6 97Model elements - state machines

8.6.6.1 98Region

8.6.6.2 98State

Modelling Standard Table of Contents

© EULYNX Partners iii

8.6.6.3 100Initial pseudostate and final state

8.6.6.4 100Choice pseudostate

8.6.6.5 100Fork pseudostate

8.6.6.6 100Join pseudostate

8.6.6.7 100Simple state

8.6.6.8 101Transition

8.6.6.9 102Event

8.6.6.9.1 102Change event

8.6.6.9.2 103Time event

8.6.6.9.3 104Internal broadcast event

8.6.6.9.4 105Signal event

8.6.6.10 106Effect

8.6.6.10.1 106Event-driven responses using signals

8.6.6.10.2 107Responses in form of continuous flows

8.6.6.10.3 107Call behaviour

8.6.6.11 107Composite state

8.6.6.12 108Sequential state

8.6.6.13 109Concurrent state

8.6.6.14 110Decomposition of states using state machine diagrams

8.6.6.15 111Transition firing order in nested state hierarchies

8.6.6.16 112Interaction between state machines

8.6.7 112Bindings (see chapter 8.2.1)

8.6.8 112Action language

8.6.8.1 112Logical operators

8.6.8.2 113Data types

8.6.8.3 113Declaring variables

8.6.8.4 114Reading the value of a port

8.6.8.5 114Setting the value of a port

8.6.8.6 114Calling an operation

8.6.8.7 114Assigning values to variables

8.6.8.8 114Conditional execution of code

8.6.8.9 115While loops

8.6.8.10 115Case selection

8.6.8.11 115Return statement

8.6.8.12 116Comments

8.6.8.13 116Example program written in ASAL

9 116References

10 117Appendix A - Reference Tool Chain

10.1 118Windchill Modeler

10.2 118IBM Rational DOORS

10.3 118Windchill Integration for IBM Rational DOORS

Modelling Standard Table of Contents

© EULYNX Partners iv

10.4 118Windchill Requirements Connector

10.5 118Windchill Modeler SySim

10.6 119MS Visual Studio

10.7 119Windchill Modeler Reviewer

Modelling Standard Table of Contents

© EULYNX Partners v

Modelling Standard

© EULYNX Partners Page 1 of 119

ID

Eu.ModSt.1

Eu.ModSt.2

Eu.ModSt.3

Eu.ModSt.1177

Eu.ModSt.7908

Eu.ModSt.7932

Eu.ModSt.7960

Eu.ModSt.7962

Eu.ModSt.4

Eu.ModSt.5

Eu.ModSt.7

Eu.ModSt.1178

Eu.ModSt.6

Eu.ModSt.49

Eu.ModSt.50

Eu.ModSt.52

Eu.ModSt.1463

Eu.ModSt.53

Requirement

1 Introduction

1.1 Release information

[Eu.Doc.30]
Modelling Standard
CENELEC Phase: 4-5
Version: 4.2 (1.A)
Approval date: 02.06.2025

Version history

version number: 4.0 (0.A)
date: 02.05.2022
author: Randolf Berglehner
review: CCB
changes: CCB comments incorporated. Baseline approved by CCB.

version number: 4.1 (0.A)
date: 08.12.2023
author: Randolf Berglehner
review: M&T
changes: EUMT-61, EUMT-62, EUMT-63, EUMT-64, EUMT-65, EUMT-66, EUMT-70, EUMT-71, EUMT-75, EUMT-76, EUMT-78, EUMT-79, EUP-497

version number: 4.2 (0.A)
date: 05.05.2025
author: Nico Huurman, Philipp Wolber
review: M&T
changes: EUMT-85, EUMT-88

version number: 4.2 (1.A)
date: 20.06.2025
author: Nico Huurman
review: CCB
changes: EUMT-81, EUMT-89, EUMT-90

1.2 Impressum

Publisher:
EULYNX Initiative

A full list of the EULYNX Partners can be found on https://eulynx.eu/.

Responsible for this document:
EULYNX Project Management Office
www.eulynx.eu

Copyright EULYNX Partners
All information included or disclosed in this document is licensed under the European Union Public Licence EUPL, Version 1.2 or later.

1.3 Purpose

1.3.1 About this Modelling Standard

The goal of this Modelling Standard is to provide a mandatory guideline for Model-based Systems Engineering (MBSE) of digital Command Control and Signalling systems (CCS) in the railway domain.

According to MBSE introduced in this Modelling Standard the structure and functionality of digital CCS are specified using the engineering-oriented and standardised Systems Modeling Language (SysML) [1].

Furthermore, the Systems Modelling Language is embedded in a specification framework compliant to the European standards on functional safety (EN 50126, EN 50128, EN 50129, EN 50159).

Based on the notion of a seamless development approach that heavily facilitates reuse, automation and innovation, an advanced and comprehensive modelling theory is used with the MBSE Specification Framework (MBSE SF)
as core component. It enables a stepwise specification of digital CCS in a configurable, extendable, modular and reusable way.

Modelling Standard

© EULYNX Partners Page 2 of 119

ID

Eu.ModSt.1975

Eu.ModSt.54

Eu.ModSt.864

Eu.ModSt.7959

Eu.ModSt.55

Eu.ModSt.56

Eu.ModSt.8

Eu.ModSt.9

Eu.ModSt.853

Eu.ModSt.849

Eu.ModSt.850

Eu.ModSt.851

Eu.ModSt.852

Eu.ModSt.10

Eu.ModSt.1262

Eu.ModSt.11

Eu.ModSt.1254

Eu.ModSt.865

Eu.ModSt.12

Eu.ModSt.13

Eu.ModSt.1974

Eu.ModSt.14

Eu.ModSt.7848

Eu.ModSt.15

Eu.ModSt.16

Eu.ModSt.1159

Eu.ModSt.866

Eu.ModSt.17

Eu.ModSt.7879

Requirement

The MBSE Specification Framework (MBSE SF) contains, among others, an Architecture Model MBSE (AM MBSE) that facilitates the description of a digital CCS from different viewpoints capturing different
stakeholder concerns and with varying degrees of granularity (different abstraction levels).

It should be noted that this document is a „living document“, i.e. it will evolve over time. The present version reflects the procedures that are currently being applied and evaluated in the EULYNX Initiative. Future versions of the
Modelling Standard will contain the topics left out in this version.

Correspondingly, as this standard is based on standard SysML, some example diagrams and pictures obtained from diverse sources, which show enhanced graphical features such as colours, shadows, 3D or embedded pictures,
shall not be considered normative.

It should also be noted that the inserted diagrams are only to be understood as examples for methodological explanation and, although there are similarities to the content of current specifications, are not intended to convey
any specification-specific content. The relevant specifications should be consulted for specification-specific content.

1.3.2 Audience

The audience targeted by this Modelling Standard comprises engineers being familiar with CCS, modellers creating specification models in this domain, and parties interested in understanding the MBSE approach followed in
EULYNX. Fundamental knowledge about requirements- and systems engineering methodology and the modelling language SysML, as, for example introduced in [24], is recommended.

1.4 Terms and abbreviations

The terms and abbreviations are listed in the EULYNX Glossary [Eu.Doc.9].

The present version of the Modelling Standard contains the abbreviations listed in Chapter 2 of it.

1.5 Related documents

The current versions of documents related to this document are listed in the EULYNX Documentation plan [Eu.Doc.11].

⦁ System Engineering Process [Eu.Doc.27]

⦁ Interpretation rules for model-based requirements [Eu.Doc.29]

2 Abbreviations

Abbr. Abbreviation

ASAL Atego Structured Action Language

AL Abstraction level

AM Architecture Model

bdd Block definition diagram (SysML)

C Command & Control layer

CCS Command Control and Signalling

Cd Command

CD Connection Domain

CENELEC European standards on functional safety (EN 50126, EN 50128, EN 50129, EN 50159)

Con Configuration data

DiaNo Diagram number

D Data

D-Port Data port

ESE Environmental Structural Entity

Modelling Standard

© EULYNX Partners Page 3 of 119

ID

Eu.ModSt.868

Eu.ModSt.20

Eu.ModSt.7874

Eu.ModSt.7875

Eu.ModSt.22

Eu.ModSt.23

Eu.ModSt.1976

Eu.ModSt.1522

Eu.ModSt.869

Eu.ModSt.24

Eu.ModSt.27

Eu.ModSt.7876

Eu.ModSt.28

Eu.ModSt.30

Eu.ModSt.31

Eu.ModSt.32

Eu.ModSt.1299

Eu.ModSt.1521

Eu.ModSt.1266

Eu.ModSt.1265

Eu.ModSt.870

Eu.ModSt.34

Eu.ModSt.1977

Eu.ModSt.36

Eu.ModSt.38

Eu.ModSt.1450

Eu.ModSt.887

Eu.ModSt.1982

Eu.ModSt.7929

Eu.ModSt.875

Eu.ModSt.1448

Eu.ModSt.37

Eu.ModSt.873

Requirement

EIL Electronic interlocking

F Field layer

FA Functional Architecture

FE Functional Entity

Gen Generic

ibd Internal Block Diagram (SysML)

ILS Interlocking System

IM Infrastructure Manager

ISE Infrastructure Elements

LA Logical Architecture

LS Light Signal

LSE Logical Structural Entity

MBSE Model-based systems engineering

MBSE SF MBSE Specification Framework

MBSEP MBSE Process

Msg Message

OE Operational Entity

ON Operational Needs

PDI Process Data Interface

PTC Parametric Technology Corporation

RA Risk Analysis and Evaluation

RAMS Reliability, Availability, Maintainability, and Safety

RCA Reference CCS Architecture

S Safety layer

SCI Standard communication interface

SCP Safe Communication Protocol

SIUS System Interface under Specification

SoS Systems of Systems

SP System Pillar

std State diagram (SysML)

stm State machine

Sys System

SysDef System Definition

Modelling Standard

© EULYNX Partners Page 4 of 119

ID

Eu.ModSt.44

Eu.ModSt.874

Eu.ModSt.41

Eu.ModSt.42

Eu.ModSt.876

Eu.ModSt.7898

Eu.ModSt.7877

Eu.ModSt.7878

Eu.ModSt.43

Eu.ModSt.877

Eu.ModSt.45

Eu.ModSt.46

Eu.ModSt.47

Eu.ModSt.48

Eu.ModSt.76

Eu.ModSt.77

Eu.ModSt.1465

Eu.ModSt.78

Eu.ModSt.1464

Eu.ModSt.1978

Eu.ModSt.79

Eu.ModSt.80

Eu.ModSt.81

Requirement

SubS Subsystem

SUS System under Specification

SysML Systems Modeling Language

SySim System simulation

T Trigger

TFA Technical Functional Architecture

TFE Technical Functional Entity

TSE Technical Structural Entity

T-Port Trigger port

ucd UseCase diagram

UML Unified modeling language

VAL Validation

VER Verification

3 Introduction

3.1 Motivation

Historically, operators of rail infrastructures were supplied with monolithic systems, based on proprietary interfaces. A few years ago, a re-orientation of the means of production of future systems was initiated. This entails
purchasing modular systems. For example, an interlocking system (ILS) comprises an electronic interlocking (EIL), a command control system and field elements such as points, signals, and so forth. The fundamental concept of
this new approach is having these parts supplied separately [12].

The new approach requires the development of standardised interfaces between the subsystems of a digital CCS such as a digital interlocking system. This will enable the different suppliers to supply compatible modules. This
requires high quality specifications, as suppliers will be working with these blueprints and the operators of rail infrastructures will carry out the system integration tasks.

Furthermore, the design of a harmonised railway system with the objective of a broad EU-wide implementation, as striven for in the System Pillar (SP), requires improving specification techniques. Thus, it is an important issue
among infrastructure managers, the railway industry and researchers to find appropriate forms to specify the architectures of complex component systems right up to huge systems of systems (SoS).

Different forms, like natural languages and graphical representations of system requirements, have been used and raised a number of criticisms. On the other hand, formal methods are considered to be one of the correct ways
to specify and verify system requirements. They have been addressed in the railway domain for a number of years. To apply these formal methods, one needs a strong mathematical background.

Thus, following the goal to create high quality specifications understandable also for people without a strong mathematical background, the popular systems modeling language (SysML) [1] is used as specification language in
the MBSE approach introduced in this Modelling Standard.

The use of standardised interfaces and highly detailed system specifications creates a need for safety to be part of the specifications. The adoption of MBSE has therefore been part of this transformation, by proving through
modelling and simulation that system specifications meet safety critical requirements.

Studies of system developments show that the capture of requirements is one of the most decisive and critical steps in system development. There are many problematic aspects connected to the identification and description of
requirements in software-intensive projects. The following three form the most important aspects as mentioned in [4]:

⦁ requirements are not completely and accurately identified and understood by the application expert;
⦁ requirements are not correctly specified, although completely and accurately identified and understood;
⦁ requirements are correctly specified using informal techniques, that are not properly interpreted and conceived by the system designer or the implementer.

All three problems may lead to a considerably more expensive and time consuming system development.

Based on these observations, an engineering-oriented model-based method for the stepwise specification of digital CCS using the Systems Modeling Language (SysML) [1] has been developed to support different professionals,
especially railway engineers, to specify, validate and verify the corresponding system requirements.

Modelling Standard

© EULYNX Partners Page 5 of 119

ID

Eu.ModSt.2010

Eu.ModSt.2012

Eu.ModSt.7899

Eu.ModSt.65

Eu.ModSt.66

Eu.ModSt.67

Eu.ModSt.68

Eu.ModSt.69

Eu.ModSt.71

Eu.ModSt.72

Eu.ModSt.7928

Eu.ModSt.73

Eu.ModSt.74

Requirement

The model-based requirements definition is used to:
⦁ enable a continuous CENELEC-compatible top-down specification of a (sub)system (refinement of the requirements across different abstraction levels)
⦁ describe the functional requirements of a (sub)system or an interface operationally and therefore suitable for simulation, i.e. testable in a uniform format
⦁ support achieving consistency, non-ambiguity and completeness of the requirements as far as possible
⦁ allow for the testing by simulation of the functional requirements of a (sub)system or an interface already during the specification phase (moving error detection to the specification phase)
⦁ support the generation of (sub)system or interface test cases from the requirements specification

The system requirements are described in a consistent, non-ambiguous and compact form using the standardised semiformal language SysML. It should be noted that the SysML model elements and their interaction are to be
understood as a means of describing the system requirements and not as implementation specifications. They are to be implemented with regard to their semantics.

The type of representation and the underlying methodology sometimes differs from common text-based specifications. However, the requirements can be further processed into functional specifications and products in
accordance with the tested processes.

3.2 Structure of the Modelling Standard

The Modelling Standard is structured as depicted in Figure 67.

Figure 67 Structure of the Modelling Standard

The main contents of the Modelling Standard are covered in Chapters 3 - 10.

In Chapter 3, an introduction to the Modelling Standard is given.

In Chapter 4, an introduction to the structure of the MBSE Specification Framework (MBSE SF) is given. The MBSE SF is the basis for the development of a stepwise model-based specification of all the design decisions that are
made during the different needed engineering activities.

In Chapter 5, the modelling language being used is introduced.

In Chapter 6, the requirements for supporting tools necessary to implement the EULYNX MBSE process are outlined. To complement this, the tool chain currently used in EULYNX is described in Appendix A. It fully supports
the EULYNX MBSE process and serves as a reference for the use of alternative tool chains.

In Chapter 7, the area „User Requirements“ of the MBSE SF is described.

In Chapter 8, the Architecture Model MBSE (AM MBSE) is introduced and the constituent model views are described. The characteristics of the EULYNX subsystems are highlighted and the principles of model-based
requirements definition are explained. Furthermore, the MBSE process is presented in a simplified way. The main part of the chapter is dedicated to the description of the model views and the corresponding modelling rules:
8.1 Overview of the EULYNX MBSE methodology
8.1.1 Characteristics of EULYNX subsystems
8.1.2 Principle of model-based definition of requirements

Modelling Standard

© EULYNX Partners Page 6 of 119

ID

Eu.ModSt.70

Eu.ModSt.7933

Eu.ModSt.236

Eu.ModSt.1492

Eu.ModSt.237

Eu.ModSt.1493

Eu.ModSt.1494

Requirement

8.1.3 Overview introduction to the EULYNX MBSE Process
8.2 Model views - General modelling rules
8.2.1 Binding of requirements
8.2.2 Modelling Pattern for interlocking systems
8.2.3 Introduction to basic structural model elements
8.2.4 Interface centric specification
8.3 Model views used to specify EULYNX subsystems
8.4 Model views used to specify EULYNX interfaces
8.5 Model views "Functional Entity" and "Technical Functional Entity" - Description
8.6 Model views "Functional Entity" and "Technical Functional Entity" - Modelling rules

In Chapter 9, the references are listed.

Appendix A (chapter 10) describes a reference tool chain that enables the implementation of the EULYNX process.

4 MBSE Specification Framework

Today's and, even more so, the future development of CCS systems in the railway domain faces a variety of challenges. Key success factors to meeting these challanges are suitable architecture description concepts for
abstraction and structure CCS architectures at different levels of granularity. The result of these concepts is a seamless development approach that heavily facilitates reuse and automation. As stated in [25], a basic requirement
for such a seamless approach is a clear notion of a system that is formalised by a comprehensive modelling theory. According to this modelling theory, a modelling framework has to provide appropriate models and description
techniques for modelling the different aspects and artefacts of system development.

Inspired by [25] and [26], this Modelling Standard introduces the MBSE Specification Framework (MBSE SF) in order to meet those aforementioned challenges. Focusing on system requirements specification and interface
requirements specification tasks to be carried out at the infrastructure manager side, it facilitates the seamless model-based specification of

⦁ EULYNX subsystems under Specification (SUS) or
⦁ EULYNX adjacent System interfaces and subsystem Interfaces under Specification (SIUS)

as well as the verification and validation of the resulting specification artefacts.

The MBSE SF consists of five areas (see Figure 238), namely
⦁ User Requirements,
⦁ System Requirements,
⦁ Domain Knowledge,
⦁ MBSE Process and
⦁ Modelling Language and Tools.

Guided by a MBSE process and based on Domain Knowledge, these areas strictly distinguish between the problem domain (User Requirements) and the solution domain (System Requirements).

Modelling Standard

© EULYNX Partners Page 7 of 119

ID

Eu.ModSt.238

Eu.ModSt.239

Eu.ModSt.245

Eu.ModSt.1468

Eu.ModSt.1486

Eu.ModSt.240

Eu.ModSt.244

Requirement

Figure 238 MBSE Specification Framework

User Requirements
The area "User Requirements" contains the model of the problem domain (problem definition) in the form of user requirements (see Fig. 1484). User requirements allow the different stakeholders to explicitly state what is
expected from the future system. They are the main source for the derivation of design decisions as basis for the creation of the artefacts of an abstract system solution (system model), which itself may be again the source for
the elicitation of new (possibly more granular) user requirements.

It has to be verified that the design decisions derived from the user requirements are incorporated in the system model completely and correctly. In other words, it has to be proved that the system model fulfils all defined user
requirements.

Furthermore, user requirements are among others (e.g. domain knowledge), the source for the validating that the system model reflects the stakeholder intentions completely and correctly.

The area "User Requirements" is described in more detail in chapter 7.

System Requirements
The area "System Requirements" contains the model of the solution domain in the form of a system model representing an abstract solution of the system (see Figure 1484). There, the design decisions derived from the user
requirements are documented (specified) traceable with varying degrees of granularity (different abstraction levels) based on the Architecture Model MBSE (AM MBSE). Each abstraction level represents design decisions about
the refined or decomposed implementation of its predecessor (refine dependency).

The correct, complete and consistent refinement or decomposition has to be approved in verification steps (verify dependency).

Modelling Standard

© EULYNX Partners Page 8 of 119

ID

Eu.ModSt.1487

Eu.ModSt.243

Eu.ModSt.1488

Eu.ModSt.242

Eu.ModSt.1489

Eu.ModSt.1467

Eu.ModSt.1484

Requirement

The Architecture Model MBSE is described in more detail in chapter 8.

Domain Knowledge
The Domain Knowledge model comprises the available knowledge of the problem domain, similar to a project glossary. It hence makes up part of the context of knowledge of the system and can be used to mitigate
misinterpretation, to reduce ambiguity, and to provide a possibility for early verification and validation of the system model [25].

The domain knowledge relevant for EULYNX is defined in [Eu.Doc.9] EULYNX Glossary and [Eu.Doc.10] EULYNX Domain Knowledge. The documents are available on the EULYNX website [31].

MBSE Process
The relationships between artifacts of the system model are specified by relations. Such a relation can be expressed by a process activity that defines a general technique for artefact creation and analysis. In the MBSE Process,
multiple of these process activities are combined to a sequence. The output of one process activity can be input of another process activity. Furthermore, one process activity's postcondition might ensure that another process
activity's precondition is met.

The EULYNX MBSE process is described in principle in chapter 8.1. A detailed description of the process steps will be given in a separate document in the future. The EULYNX System Engineering process is currently documented
in [Eu.Doc.27] and the procedure for verification and validation of the specification models in the EULYNX verification and validation plan [Eu.Doc.31]. The documents are available on the EULYNX website [31].

Modelling Language and Tools
The suggested modelling language and the requirements for supporting tools necessary to implement the EULYNX MBSE process. are introduced in chapter 5 and chapter 6 respectively.

Figure 1484 Problem definition and abstract solution in the MBSE SF

Modelling Standard

© EULYNX Partners Page 9 of 119

ID

Eu.ModSt.246

Eu.ModSt.247

Eu.ModSt.248

Eu.ModSt.249

Eu.ModSt.250

Eu.ModSt.251

Eu.ModSt.252

Eu.ModSt.253

Eu.ModSt.254

Requirement

5 Modelling Language

5.1 Systems Modeling Language (SysML)

The Systems Modeling Language [1] is used with the objective to document requirements and to specify artefacts in a standardised, correct, complete and consistent way within the framework of the MBSE specification
structure, as outlined above.

SysML is a standardised modeling language dedicated to systems engineering applications. It is a UML profile that not only reuses a subset of UML 2.5 [2], but also provides additional extensions to better satisfy Systems
Engineering‘s specific needs. It is intended to help to specify and design complex systems and their subsystems and enable their analysis, verification and validation. These systems may consist of heterogeneous components
such as hardware, software, information, processes, personal and facilities [1].

Nine SysML diagrams (see Fig.251) define a concrete syntax that describes how SysML concepts are visualized graphically or textually. Each diagram represents a specific view of the model of the SUS or SIUS. In the SysML
specification [1], this notation is described in tables that show the mapping of the language concepts into graphical symbols on diagrams. Diagrams used in this Modelling Standard will be outlined in the following chapters. For a
detailed description, however, the SysML specification [1] shall be referred to.

Figure 251 SysML diagram taxonomy [1]

5.2 Action Language

The specification approach described in this modeling standard follows the objective of creating executable specification models. In order to specify the necessary executable behaviours in SysML, such as block operations or
transition effects on state machines the Atego Structured Action Language (ASAL) is used.

ASAL is an UML Action Language suitable for specifying executable algorithms in a target language independent way. It is used to specify the Event Action Blocks in SysML models that use state machine diagrams describing the
stimulus-response behaviour of a SUS or a SIUS.

Modelling Standard

© EULYNX Partners Page 10 of 119

ID

Eu.ModSt.255

Eu.ModSt.256

Eu.ModSt.7697

Eu.ModSt.161

Eu.ModSt.162

Eu.ModSt.301

Eu.ModSt.7912

Eu.ModSt.7913

Eu.ModSt.7914

Eu.ModSt.7915

Eu.ModSt.312

Eu.ModSt.313

Eu.ModSt.107

Eu.ModSt.314

Eu.ModSt.108

Eu.ModSt.110

Eu.ModSt.112

Eu.ModSt.1485

Requirement

Furthermore, ASAL is used to describe the transformational aspects of a SUS or SIUS (data flow). The logical structure of the input and output data, and the algorithm that computes the transformation are specified in the body
of corresponding block operations.

A description of ASAL is provided in chapter 8.6.8 (see also [13]).

5.2.1 The role of data types

According to the specification approach described in this Modelling Standard, a data type is a classification based on identification of one of the various types of data (e.g. the type of a message sent along a SUS interface). The
data type such as Boolean, Integer or String restrict the possible values corresponding to that type, the meaning of data, the way values of that type can be stored and how a state machine receiving such data reacts.

A data type may be refined in the tradition of data refinement [4]. We may, for example, type a message in the specification model as string, and after implementation level design of the SUS or SIUS instead of sending strings,
bits are sent. Thus, a data type used in the specification model may be refined and an implementation-oriented data type may be used by the supplier of the SUS or SIUS. However, it must be ensured that the new data type
complies with its predecessor (verification of the refinement).

6 Tools

The EULYNX MBSE process shall be supported by a toolchain that enables the creation of SysML specification models, their static checking for completeness, correctness and consistency and the simulation-based validation of the
models. It should be noted here that the creation of the executable models (virtual prototypes) can take place directly, i.e. without the need for the intermediate step of a model transformation.

Furthermore, the application of formal methods must be made possible (e.g. formal proof of safety properties, model checking, etc.).

The modelling tool shall provide a link to a requirements management tool that allows the representation of specification model elements in the form of atomic requirements. These must be able to be transformed into the
standardised Requirements Interchange Format (ReqIF) and exchanged with suppliers.

The tool chain currently used in EULYNX is shown serving as a reference for the use of alternative tool chains in Appendix A - Reference tool chain.

7 User Requirements

7.1 Overview

As many standards such as the EN 50126 [17] do not distinguish between a user requirements and system requirements definition phase, this has to be clarified in order to meet the objective of this Modelling Standard. The
MBSE Specification Framework introduced in chapter 4 takes account of this providing a structure to explicitly define user requirements separated from system requirements.

As already stated, user requirements are depicted in the area „User Requirements“ of the MBSE SF and describe the problem domain (problem definition). They allow the stakeholders (users) to explicitly state what is expected
from the SUS/SIUS. They should define the results wanted by the stakeholders i.e. what the stakeholders want to be able to do with the SUS/SIUS and the expected quality. However, they should not make any comments or
statements about how the SUS/SIUS is to be created or provided.

User requirements define the results that the users want, irrespective of any functional breakdown (see Figure 112). They must be separate from system requirements and must be defined first.

The system requirements must solve the problem of the user, i.e. they must satisfy the user requirements. This has to be approved by means of validation.

Figure 112 Differentiating user and system requirements

The task of defining user requirements encompasses the whole MBSE Process. They are the main source for the creation of the model of an abstract system solution which represents the system requirements.

Modelling Standard

© EULYNX Partners Page 11 of 119

ID

Eu.ModSt.316

Eu.ModSt.1473

Eu.ModSt.1474

Eu.ModSt.1475

Eu.ModSt.1476

Eu.ModSt.1478

Eu.ModSt.1481

Eu.ModSt.1480

Eu.ModSt.1482

Eu.ModSt.1490

Eu.ModSt.1491

Eu.ModSt.317

Eu.ModSt.318

Eu.ModSt.319

Eu.ModSt.320

Eu.ModSt.321

Eu.ModSt.322

Eu.ModSt.1479

Requirement

User requirements should be stated by (or on behalf of) the stakeholders for whom the SUS/SIUS is being developed. Even if the stakeholders do not actually write the user requirements, they should review and when they are
happy "endorse" them, and hence take an "ownership" of them.

User requirements may be divided into different classes such as operational requirements, architectural requirements, technical constraints, quality requirements, safety requirements and so on. Safety requirements are an
important class of user requirements and thus shortly introduced in chapter 7.2. As the main focus of this Modelling Standard is not the elicitation of user requirements, the other different types are not further described.

7.2 Safety requirements

Safety requirements, also referred to as safety goals, state safety invariants, i.e. conditions that could lead to hazardous situations if they are not met. They can be split into the following two categories [9]:
- Safety invariants: What may not happen under any circumstances,
- Safety overrides: Who may do what under which circumstances.

The origin or approach for defining safety requirements can vary. In this section, characteristics of three different methods [26] to create safety requirements are outlined.

Ad-hoc elicitation
The first it is referred to as ad-hoc. Such requirements are specific to a particular system and are based on the design principles for that system. One such requirement for a relay-based interlocking may state that “Front coil of
relay L may have current only if relay Ljg has dropped”.

Regulations-based elicitation
The second is referred to as regulations-based. Requirements are based on safety standards, e.g. based on formalising requirements in applicable rules and regulations. One such requirement for an interlocking may state
that “a main signal may clear only if there is an established flank protection”, together with appropriate definitions of what "clear" means and what the requirements on flank protection means.

Hazard-based elicitation
The third is referred to as hazard-based. Requirements are based on making an analysis (hazard analysis) of the different types of possible hazards (e.g. frontal collision of trains, derailment and so on) and for each possible
hazard, require that it is impossible. Essentially, the purpose of hazard analyses is to identify operational conditions of the SUS's functionality that could lead to harm. The main outputs of such an analysis are hazards and safety
goals (i.e. safety requirements).

Safety requirements should be documented separately from other user requirements and incorporated into the system`s requirements artefacts. The complete and correct incorporation of the safety requirements has to be
assured using verification methods such as simulation-based falsification methods or formal verification methods [25].

Simulation-based falsification methods can work directly on simulation models such as executable SysML state machines. In general, given a safety requirement in some form of logic, these methods leverage mathematical
methods, trying to falsify the requirement. This means that the algorithms are geared towards identifying the "worst possible" simulation run with respect to the given requirement. If the method succeeds in producing a run
which violates the requirement, it is falsified and the counterexample can be used to refine either the requirement or the simulation model. If it does not, no formal guarantees about the fulfillment of the requirement can be
made.

In contrast, formal verification methods aim to provide formal proof of the correctness of the requirement for the given model of the SUS/SIUS. Because this proof cannot be provided by simulation alone, a strictly formal
model is required.

7.3 Formulation of user requirements

This Modelling Standard does not have the intention to impose obligations how user requirements have to be formulated, but suggests a formulation as textual requirements according to the SysML specification [1].

SysML introduces the requirement diagram which provides the means to depict requirements and to relate them to other specification, design or verification models. The requirements can be represented in graphical, tabular, or
tree structure formats.

The strength and usefulness of a requirement diagram consists in the fact that it allows to easily understand the relations between the requirements and other model elements. The semantics of these relationships and other
diagram elements are explained in [1].

A requirement can be decomposed into sub-requirements in order to organize multiple requirements as a tree of compound requirements. Moreover, a requirement can be related to other requirements as well as to other
elements, such as analysis, implementation, and testing elements (see Figure 323).

Therefore, a requirement can be generated or extracted from another requirement by using the derive relationship. Furthermore, requirements can be fulfilled by certain model elements using the satisfy relationship. The verify
relationship is used to verify a requirement by applying different test cases.

User requirements (especially safety requirements) should be verifiable, so that it is possible to distinguish a system model satisfying the user requirements from one that does not do. Typical reasons for user requirements not
being verifiable include:
- The user requirement is incomplete.
- The user requirement is poorly written.
- The user requirement is not described at the level it will be verified.

Modelling Standard

© EULYNX Partners Page 12 of 119

ID

Eu.ModSt.323

Eu.ModSt.332

Eu.ModSt.330

Eu.ModSt.335

Eu.ModSt.1516

Eu.ModSt.342

Eu.ModSt.1561

Eu.ModSt.357

Eu.ModSt.358

Eu.ModSt.360

Eu.ModSt.362

Eu.ModSt.1520

Eu.ModSt.336

Requirement

Figure 323 Requirement diagram example [1]

8 Architecture Model MBSE

The design decisions derived from the user requirements are documented traceable in the area "Architecture Model MBSE“ of the SF MBSE in the form of a model of the abstract solution of a SUS or a SIUS.

Focusing on specification tasks to be carried out at infrastructure manager (IM) side, the Architecture Model MBSE (see Figure 340) facilitates the description of a SUS or a SIUS from different viewpoints capturing different
stakeholder concerns and with varying degrees of granularity (different abstraction levels).

Viewpoint
A viewpoint is a specification of the conventions for constructing and using a view. Viewpoints comprise patterns or templates from which to develop individual views by establishing the purpose and audience for a view and the
techniques for its creation and analysis (based on [29]).

Abstraction level
An abstraction level defines a specific level of abstraction and granularity at which the SUS/SIUS is examined. The level of granularity of the respective abstraction level is in turn determined by a structural characteristic that
stems from the layer above. Initially we consider the SUS/SIUS as a whole [25]. In other words, an abstraction level describes the whole of a SUS/SIUS under a certain degree of abstraction, i.e. it represents the amount of
complexity by which a SUS/SIUS is viewed. The higher the level, the less detail. Any abstraction level contains several appropriate views.

To change the degree of granularity for a given view to a higher degree, a low degree view is refined into a number of more detailed SUS/SIUS views following the principle of divide and conquer. This step can basically be
performed from any viewpoint.

Refinement
Refinement refers to the process of detailing an analysis or design element while preserving its semantics [25]. The degree of abstraction decreases from top to bottom, i.e. the lower the degree of abstraction the higher the
degree of refinement of corresponding views.

The EULYNX MBSE methodology is based on two basic refinement relations, namely, behavioural and interface refinement. These relations are described as follows [4].

Behavioural refinement
Behavioural refinement relates to specifications of the same syntactic interface. The refined (more precise) specification may impose further functional and non-functional requirements in addition to those imposed by the given
(more abstract) specification.

Interface refinement
Interface refinement relates to specifications of different syntactic interfaces. The refined specification is a „behavioural refinement“ of the given specification with respect to a translation of its input/output histories. For example,
interface refinement allows to replace a message by several messages, and vice versa or instead of transmitting natural numbers, bits may be sent (data refinement).

Decomposition
In contrast to refinement, decomposition denotes the partitioning of an analysis element or design element, or a logical/technical component into parts [25].

View
A view is a representation of a whole SUS/SIUS from the perspective of a related set of concerns (based on [29]. In other words, a SUS/SIUS description from a specific viewpoint and with a specific degree of granularity is
called a view [25]. Within the scope of this Modelling Standard, a view is synonymously referred to as "view", "model view" or "system view".

Modelling Standard

© EULYNX Partners Page 13 of 119

ID

Eu.ModSt.1336

Eu.ModSt.334

Eu.ModSt.331

Eu.ModSt.333

Eu.ModSt.3561

Eu.ModSt.1526

Eu.ModSt.1525

Eu.ModSt.337

Eu.ModSt.1242

Requirement

Engineering path
As illustrated in Figure 340 the development of views for a SUS or SIUS with a specific degree of granularity is summarised in an engineering path.

The AM MBSE facilitates the seamless, model based specification of digital CCS in the railway domain with three core IM-related viewpoints namely
⦁ Functional Viewpoint,
⦁ Logical Viewpoint and
⦁ Technical Viewpoint.

The viewpoints describe a SUS or a SIUS with respect to different concerns. However, these descriptions may vary in their degree of granularity. For complex SUS/SIUS in particular, it is reasonable to start with rather high-level
descriptions. Once these high-level descriptions have been created, these views are typically refined and detailed step by step. Therefore, the AM MBSE supports views with different degrees of granularity i.e. views at different
abstraction levels.

Following EN 50126 [17] the AM MBSE consists of three core IM-related abstraction levels (AL) namely
AL1: Subsystem/Interface Definition,
AL2: Subsystem/Interface Requirements and
AL3: Apportionment of Subsystem/Interface Requirements.

The AM MBSE can also be applied to specify an overall system, which is not the case in EULYNX at the moment. In this case, the abstraction levels are named as follows:
AL1: System Definition,
AL2: System Requirements and
AL3: Apportionment of System Requirements.

Each of the IM-related core AL may again be decomposed in further AL such as AL1.1, AL1.2 and so on as appropriate. Any AL represents design decisions about the refined or decomposed implementation of its predecessor and
the specification of the outcome of this decisions by means of appropriate views.

Crosscutting system properties (CSP)
One of the principles of the AM MBSE is the continuous engineering of crosscutting system properties. This principle aims at establishing the ability to consider crosscutting properties of the SUS/SIUS. Typical crosscutting
properties are RAMS [17], security and real-time properties of the SUS/SIUS: they must be considered in any engineering activity and the corresponding artefacts [25].

Safety, for example, typically defined as freedom from unacceptable risk (of harm), affects almost all process steps in a development lifecycle. For this reason, safety is not represented in a single viewpoint but as a quality
aspect of the AM MBSE that has a crosscutting influence and is integrated into several viewpoints.

The growing complexity of safety-critical railway systems is leading to increased complexity in safety analysis models. It is therefore not appropriate to develop functionality and consider safety in separate tasks. Safety aspects
have to be integrated as tightly as possible into the development process and its models [25].

Modelling Standard

© EULYNX Partners Page 14 of 119

ID

Eu.ModSt.340

Eu.ModSt.879

Eu.ModSt.2110

Eu.ModSt.1663

Eu.ModSt.7012

Eu.ModSt.7014

Eu.ModSt.88

Eu.ModSt.7702

Eu.ModSt.84

Requirement

Figure 340 Architecture Model MBSE

8.1 Overview of the EULYNX MBSE methodology

The EULYNX initiative is aiming at specifying EULYNX subsystems and standardising their interfaces (SCI, SMI, SDI) and the interfaces between adjacent systems.

This chapter provides an overview of the used MBSE methodology. The EULYNX MBSE methodology assumes that a definition of the EULYNX architecture is known. Thus, it is currently not designed to describe system
architectures but black-box specification models of EULYNX subsystems, their standardised interfaces and standardised interfaces between adjacent systems.

8.1.1 Characteristics of EULYNX subsystems

Command control and signalling (CCS) systems such as EULYNX subsystems are reactive control systems [32] and most of them safety-critical [11]. They are characterized by the constant interaction and synchronisation
between the system and its environment.

The terms "system" and "reactive system" shall be explained first.

8.1.1.1 System

A system is a technical or a sociological structure consisting of a group of entities combined to form a whole that can work, function, or move interdependently and harmoniously. A system may consist of various system
elements called subsystems, that can be understood as systems on their own. Systems are thus hierarchically divided into subsystems [4]. Since the single system is, in turn, a part of a larger system, one may speak of an
embedded system [5].

Modelling Standard

© EULYNX Partners Page 15 of 119

ID

Eu.ModSt.86

Eu.ModSt.7059

Eu.ModSt.1496

Eu.ModSt.89

Eu.ModSt.1497

Eu.ModSt.90

Eu.ModSt.91

Eu.ModSt.1499

Eu.ModSt.1498

Eu.ModSt.93

Eu.ModSt.7015

Eu.ModSt.7016

Eu.ModSt.7017

Eu.ModSt.7018

Eu.ModSt.7019

Eu.ModSt.7020

Eu.ModSt.7021

Requirement

EULYNX follows the objective of structuring the EULYNX overall CCS system hierarchically into subsystems in a way, that the resulting subsystems, referred to as modules, can be supplied by different suppliers and then
integrated independent of a particular vendor [12]. As far as the specification of those modules, such as a Subsystem Light Signal, a Subsystem Point, a Subsystem LX and so on is concerned, they are fitted with standardised
interfaces and seen as black boxes without any further decomposition.

8.1.1.2 Reactive system

A reactive system is a system that, when switched on, is able to create desired effects in its environment by enabling, enforcing, or preventing events in the environment.

Following the deterministic paradigm which is a key requirement for a safety-critical railway system, in contrast to non-deterministic systems, the same sequence of system inputs always produces the same sequence of system
outputs.

Safety is a major quality of safety-critical railway systems that must be considered in any activity during engineering. Safety can be characterized as the extent to which the SUS will not have effects on its environment that result
in harm to people, significant monetary losses, or any other negative impacts to its environment [25].

Reactive systems have a number of characteristics [8]:
⦁ The system is in continuous interaction with its environment.
⦁ The process by which the reactive system interacts with its environment is usually nonterminating. If a reactive system terminates during its availability time, this is usually considered a failure.
⦁ In its interaction with the environment, the system will respond to external stimuli as and when they occur. The system must therefore be able to respond to interrupts, even if it is doing something else.
⦁ The response of a reactive system depends on its current state and the external event that it responds to. The response may leave the system in a different state than it was before.
⦁ The response consists of enabling, enforcing, or preventing interaction with its environment.
⦁ The behaviour of a reactive system often consists of a number of interacting processes that operate in parallel.
⦁ Often a reactive system must operate in real time and under stringent time requirements.

Although reactive systems may provide manifold functionality, they all engage in stimulus-response behaviour. Thus, for the specification of a reactive system appropriate techniques are needed for specifying stimulus-response
behaviour.

For the specification of the stimulus-response behaviour of a safety-critical railway system such as an interlocking system that may be described by discret states, finite state machines such as SysML state machines may be
used.

Similar to the characteristics of reactive systems are the characteristics of interactive systems. While for reactive systems the stimulus-response behaviour is determined by the physical-technical environment, the stimulus-
response behaviour of interactive systems is determined by the system.

Reactive systems or interactive systems can be contrasted with transformational systems [8], which exist to transform an input into an output. A diagnostic expert system, for example, is a transformational system; it may enter
an interactive dialogue to acquire all relevant data about a malfunctioning system, but when all data is provided, the expert system will produce its diagnosis as output and terminates.

Since a EULYNX subsystem also has the characteristic of a control system, this term shall be explained next.

8.1.1.3 Control system

To control means to regulate or direct. Hence a control system is an arrangement of physical components connected in such a manner to direct or regulate itself or another system.

If a lamp is switched ON or OFF using a switch, according to the example shown in chapter 8.1.3, the entire system can be called a control system. In short, a control system is in the broadest sense, an interconnection of
physical components to provide the desired function, involving controlling action in it.

For each control system, there is an input and an output. The input is the stimulus, excitation, or reference value applied to a control system to produce, depending on its internal state, a specific response and the output is the
actual response obtained from the control system. The specification of a control system can thus basically be done in stimulus-response form.

8.1.1.4 Typical control loop of a EULYNX subsystem

Figure 7022 shows a typical control loop of a CCS system such as a EULYNX subsystem. The "Plant" is the system being controlled such as the point in the environment of the control system consisting of point controller and
point machine (see Figure 7051).

Modelling Standard

© EULYNX Partners Page 16 of 119

ID

Eu.ModSt.7051

Eu.ModSt.7023

Eu.ModSt.7024

Eu.ModSt.7025

Eu.ModSt.7026

Requirement

Figure 7051 Example of a plant

Most core control system functions can be assigned to one of the four categories listed below:
⦁ Control: the purpose of a control function is to transform information about a needed change of the plant’s state into instructions or commands for the state of the actuators. Control functions are where all the decisions
are made.
⦁ Actuate: the purpose of an actuate function is to transform instructions or commands into a physical state that has some effect on the plant’s internal state.
⦁ Sense: the purpose of a sense function is to transform a physical external state of the plant into information about the plant’s external state.
⦁ Observe: the purpose of an observe function is to transform information about the plant’s external state into an observation about the plant’s internal state. Observe functions are where inferences are made about the
state of the plant given incoming data.

Basically, only what can be observed can be controlled. This is not the same as saying that only what can be sensed can be controlled. Sensed data can be used to estimate an internal state that shall be controlled, but an
internal state cannot be directly sensed. Only the external states of the plant can be sensed.

The point state (LEFT, RIGHT or TRANSITION) of a railroad turnout, for example, is an internal state. It can be inferred by sensing the current flow via the point machine position sensor contacts. From these sensed current flow,
we can infer the internal state that is the point state of the turnout.

Figure 7022 shows the flow of information between the functions [(2), (5), (6)] within the control system and between them and an external reference (1) and the “Plant” [(3), (4)] using a railroad turnout as an example. The
information flows (4), (5) and (6) correspond to the “feedback” of a closed loop control system as described in [32]. The information flows are described below:

(1) Required internal state of “Plant”: e.g. required point state “LEFT”,
(2) Required external state of “Plant”: e.g. connected voltage for moving the point machine to the left (four-wire interface),
(3) Actual external input state of plant: e.g. movement of the point machine drive rod to bring the point into the left position,
(4) Actual external output state of plant: e.g. switching position of the point machine position sensor contacts depending on the point machine drive rod position,
(5) Sensed external output state of plant: e.g. current flow via the point machine position sensor contacts (four-wire interface),
(6) Estimated internal state of plant: e.g. estimated point state “RIGHT” or “TRANSITION.

Modelling Standard

© EULYNX Partners Page 17 of 119

ID

Eu.ModSt.7022

Eu.ModSt.7052

Eu.ModSt.201

Eu.ModSt.7699

Eu.ModSt.7053

Eu.ModSt.7058

Eu.ModSt.7056

Eu.ModSt.7057

Eu.ModSt.7321

Requirement

Figure 7022 Typical control loop of a EULYNX subsystem

8.1.1.5 Interpretation of the concept of "Function"

According to the EULYNX MBSE approach, use cases form the basis for the functions to be provided by a SUS at the highest level of abstraction, i.e. at abstraction level AL1 of the AM MBSE. They describe the functionality of a
SUS in terms of how it is used to achieve the goals of its various users (see chapter 8.1.2.2.3). In other words, use cases create desired effects in the SUS environment.

In contrast to a use case, a function is the ability of a SUS to create a desired effect in the system environment. So all use cases of a SUS are functions and each function realises one or more UseCases [8].

At abstraction level AL2 of the AM MBSE, a function is represented by a Functional Entity (FE) or a Technical Functional Entity (TFE). Both encapsulate subsets of functional requirements of EULYNX SUSs or SIUSs in the form of
function modules. They delimit the function modules from their environments and define the inputs and outputs.

While FEs define technology-independent functional requirements derived from corresponding use cases defined on abstraction level AL1, TFEs describe technology-dependent ones.

FEs and TFEs have SysML state machines and SysML block operations to describe behaviour. SysML state machines enable the specification of finite discrete event dynamic behaviour. SysML block operations are used to perform
logical or algebraic transformations. The corresponding algorithms are defined in the operation bodies using the action language ASAL. Block operations are currently used as call operations. This means that they have a finite
execution cycle (they are called, for example during state transitions, executed, and return a value).

The EULYNX specification approach allows the description of functional control system architectures and their governing control loops through the "Functional Architecture" and "Technical Functional Architecture" model views of
AM MBSE. As exemplified in Figure 7055, the functions of a control system are represented by interconnected FEs or TFEs.

Please note: FEs and TFEs are used for the structured description of a SUS or SIUS and are not in themselves architectural specifications for the manufacturer. In other words, a manufacturer does not have to prove that it
implements a particular FE or TFE. Proof is only required for the overall behaviour defined by the interconnected FEs or TFEs in a functional or technical functional architecture.

Modelling Standard

© EULYNX Partners Page 18 of 119

ID

Eu.ModSt.7055

Eu.ModSt.2041

Eu.ModSt.2061

Eu.ModSt.2044

Eu.ModSt.2047

Eu.ModSt.2048

Eu.ModSt.2042

Eu.ModSt.2111

Eu.ModSt.2043

Eu.ModSt.2045

Eu.ModSt.2046

Eu.ModSt.7067

Eu.ModSt.114

Requirement

Figure 7055 FE and TFE in a Technical Functional Architecture

8.1.2 Principle of model-based definition of requirements

8.1.2.1 Applied description methods for model-based requirements

To best support the verification and validation effort of specified SUS/SIUS requirements and to keep the specification understandable for engineers, the EULYNX specification approach aims to describe the functional SUS/SIUS
requirements in the form of operational specifications.

As mentioned above, the CCS systems currently specified in EULYNX are reactive control systems and characterised by the constant interaction and synchronisation between the system and its environment.

A reactive control system, when switched on, engages in stimulus-response-behaviour in order to create desirable effects in its environment. For that reason, the EULYNX methodology proposes the specification of the functional
system requirements in stimulus-response form.

As the focus of EULYNX is on the specification of interfaces, the behaviours of EULYNX systems are specified using an interface centric approach.

In the following sections, the concepts of "operational specification", "stimulus-response specification" and "interface centric approach" are explained.

8.1.2.1.1 Operational specification

An operational specification describes the behaviour of a system using an abstract machine. This can be realized using data-flow diagrams that assemble functions connected by data flows. Since data flows may not always be
natural for expressing control aspects, finite state machines can be preferred to describe the temporal and behavioural views of a system.

Control is specified using states, events, and transitions in response to stimuli. There are many variants of state machine specification languages. A state machine can be executed, to validate the behaviour, and static analyses
of the state machine can be performed (including consistency properties, and formal verification of properties).

In general, using an operational specification of behaviour and requirements offers an advantage in that it enables to determine if a specific property holds or not. This can prevent communication issues between different actors
(designers, builders, customers, and users) since the operational specification provides a reference model to check the property against.

For an operationally specified functional system property, there is a test that they can all perform and agree on the outcome - either the SUS/SIUS to be specified does or does not satisfy this property (see Figure 115).

Modelling Standard

© EULYNX Partners Page 19 of 119

ID

Eu.ModSt.7068

Eu.ModSt.7069

Eu.ModSt.115

Eu.ModSt.7066

Eu.ModSt.7070

Eu.ModSt.2049

Eu.ModSt.2050

Eu.ModSt.2051

Eu.ModSt.2052

Requirement

Whether an operational specification exhibits a specific property may often-case be easy to determine but it may also offer a challenge, for various reasons. To determine if a property holds or not can be non-trivial due to e.g.,
specification complexity that may prevent inspection alone, state-space explosion impacting the results attainable in automated analysis, and semantics for interpretation that can complicate analyses.

In general, it is desirable to have an implementation-independent operational specification, so that all stakeholders can agree on and use the same specification. The reason for this is to avoid, when the SUS/SIUS is delivered,
that supplier and customer dispute about whether SUS/SIUS meet the desired properties or not. In general, it is recommended that SUS/SIUS specifications are operationalised as much as possible [8].

Figure 115 Test of an operationally specified system property

8.1.2.1.2 Stimulus-response specification

Stimulus-response specifications are an important class of operational specifications.

A stimulus-response specification has the form

s AND C = > r

where s is a stimulus, C is a condition on the system state, and r is a response. The design process consists of decisions about r.

In a nutshell, whenever a stimulus occurs there will be a corresponding response. The kind of response depends on the condition on the state of the system. Please note: this is also said to be a response if a stimulus occurs and
the system "keeps quiet".

A single stimulus-response pair is henceforth also referred to as an interaction.

An interaction is generally formulated according to the following action block schema comprising four action steps (see Figure 173):

Interaction:
I. - The SUS or SIUS receives a stimulus.
II. The SUS or SIUS validates the stimulus.
III. The SUS or SIUS changes its internal state (or not).
IV. The SUS or SIUS responds with the result (Please note: a result may also be that the SUS or SIUS "keeps quiet").

However, there may be more than four action steps applied or fewer.

Modelling Standard

© EULYNX Partners Page 20 of 119

ID

Eu.ModSt.173

Eu.ModSt.2053

Eu.ModSt.2054

Eu.ModSt.2055

Eu.ModSt.2056

Eu.ModSt.2057

Eu.ModSt.2058

Eu.ModSt.2059

Requirement

Figure 173 The four steps of an action block

An interaction always starts with the stimulus identified by a dash "-" (see step I in ID 355 above). A stimulus may have its origin
⦁ in the request of a primary actor (a primary actor is an actor in the environment of the SUS or SIUS who requires a service from it),
⦁ in a timed trigger,
⦁ in an internal trigger (that is, an event that occurs in the system) or
⦁ in the entering or leaving a system state.

Interactions may be extended to contracts.

The central idea of contracts is a metaphor on how the SUS or SIUS and the actors collaborate on the basis of mutual obligations and benefits. Having written functional requirements in the style of interactions, those contracts
can easily be obtained - interactions together with pre- and postconditions.

If a SUS or SIUS provides a certain functionality, it may
a) expect a certain condition to be guaranteed on entry by an actor that sends the request: the precondition of the interaction - an obligation for the actor, and a benefit for the SUS or SIUS, as it relieves it from having to
handle the cases outside of the precondition.
b) guarantee a certain property on exit: the postcondition of the interaction - an obligation for the system, and obviously a benefit (the main benefit of the request) for the actor.

The following applies for preconditions and postconditions in this context:
a) The interaction may only be triggered by the actor if the precondition is met; this presupposes that the actor knows the current system condition,
b) The system must ensure in turn that the postcondition is met after the completion of the interaction. If no explicit postcondition has been defined (indicated by three dashes "---"), the requirement applies that the
postcondition is identical to the precondition.

A contract is formulated according to the following schema:

Precondition:
Definition of the precondition

Interaction:
I. - The SUS or SIUS receives a stimulus.
III. The SUS or SIUS changes its internal state (or not).
IV. The SUS or SIUS responds with the result (Please note: a result may also be that the SUS or SIUS "keeps quiet").

Postcondition:
Definition of the postconditions

Alternatively to this, functional system requirements may be written without using contracts. In these cases it can not be assumed that the actor knows the current SUS or SIUS condition and complies with the precondition.
The preconditions of the interactions are empty and the SUS or SIUS must first check on itself whether the preconditions are met before responding to the stimulus. The above schema is modified as follows (see text in italics):

Precondition:

Modelling Standard

© EULYNX Partners Page 21 of 119

ID

Eu.ModSt.2060

Eu.ModSt.2062

Eu.ModSt.2063

Eu.ModSt.2064

Eu.ModSt.2065

Eu.ModSt.2066

Eu.ModSt.2067

Eu.ModSt.2068

Requirement

Interaction:

I. - The SUS or SIUS receives a stimulus.
II. The SUS or SIUS validates the stimulus considering the current internal state.
III. The SUS or SIUS changes its internal state (or not).
IV. The SUS or SIUS responds with the result (Please note: a result may also be that the SUS or SIUS "keeps quiet").

Postcondition:
Definition of the postconditions

In those cases, the check may fail in the second step. From this step on, a different internal condition might need to be entered and a different response might need to take place. Variants of the interaction would therefore
have to be considered.

Interactions and contracts, as defined above, provide the basic schemata for the model-based description of functional system requirements in stimulus-response form. Depending on the abstraction level two model-based
description methods are used:

⦁ Use case scenarios (interaction scenarios) are used at abstraction level AL1 Subsystem Definition defining the interaction of the subsystem with its environment.
⦁ State machines are used at abstraction level AL2 Subsystem Requirements completely refining the externally visible stimulus-response behaviour described by means of the use case scenarios at abstraction level AL1
Subsystem Definition.

These two model-based description methods will be demonstrated defining the functional system requirements of a simple system based on the functional user requirements (FUR) listed below:

FUR1: The user wants to switch on the light by pressing a button if the light is off,
FUR2: The user wants the light to be switched off automatically after a defined time.

As shown in Figure 3 the SUS named "System" is connected to the two actors "Light" and "Button" in the environment.

Figure 3: Simple system

According to the functional user requirements described above the SUS is required to fulfil the functional system requirements (FSR), described in classical textual form below:

FSR1: The system shall switch on the light if the light is switched off and the button is pressed,
FSR2: The system shall switch off the light automatically after the time t_Light_On has expired.

8.1.2.1.3 Description method using use case scenarios

The functional user requirements FUR1 and FUR2 defined above (see ID 215) require the SUS "System" to provide a service for the users. As shown in Figure 2070, this service is defined as system use case "SysUC1.1: Switch
on the light time-limited".

Modelling Standard

© EULYNX Partners Page 22 of 119

ID

Eu.ModSt.2069

Eu.ModSt.184

Eu.ModSt.186

Eu.ModSt.187

Eu.ModSt.189

Eu.ModSt.2070

Eu.ModSt.2071

Eu.ModSt.2072

Eu.ModSt.2073

Eu.ModSt.2074

Eu.ModSt.2075

Eu.ModSt.2076

Requirement

System use cases describe the functionality of a SUS or SIUS in terms of how it is used to achieve the goals of its various users. The users of a SUS or SIUS are described by actors (i.e. "Button" and "Light"), which may
represent external systems or humans who interact with the system. A UseCase is denoted by an ellipse, and the actors participating in the UseCase are connected to the ellipse by solid lines.

On the original work on UseCases by Ivar Jacobson, Jacobson defines a UseCase as follows [20]:

„A use case is a sequence of transactions performed by a system, which yields an observable result of value for a particular actor. A transaction consists of a set of actions performed by a system and is invoked by a stimulus
from an actor to the system, or by a timed trigger within the system“.

To understand transactions in the database sense is too narrow, because if a transaction succeeds then changes are made to the system (committed), otherwise the system is reverted to the original state (rollback).

Cockburn interprets in his book [22] what Jacobson [20] means by a transaction in the four steps of an action block (see Figure 173) representing an interaction.

The flow between the trigger and the result of a use case has a time coherence, i.e. no domain interruption is possible.

Figure 2070: UseCase shown in a UseCase diagram

A complete use case, i.e. a primary UseCase consists of one or multiple interactions which can alternatively be formulated as contracts. A UseCase having only one interaction is an interaction written as a use case.

The interactions specifying a UseCase such as "SysUC1.1: Switch on the light time-limited" are described in a model-based way by use case scenarios. Use case scenarios are represented by SysML sequence diagrams.

The specification of the use case scenarios may cover a standard sequence and one or several alternative sequences, e.g. to represent a failed validation of the stimulus. Normally, the "good case" of an use case scenario is
specified in the "standard sequence" and deviating sequences in "alternative sequences". If no unique standard sequence can be determined, it is also possible that only "alternative sequences" exist.

For this reason, a use case may be defined by use case scenarios in the following compositions:
- one Main Success Scenario and any number of Alternative scenarios,
- only one Main Success Scenario,
- any number of Alternative Scenarios without a Main Success Scenario.

Several interactions may be combined directly after each other without explicitly depicting the pre- and postconditions between them in an interaction scenario if the postconditions of the previous interaction are identical to the
preconditions of the subsequent interaction.

If it can be assumed that the current state of the SUS is visible in its environment, the textually formulated functional requirements FSR1 and FSR2 (see ID Eu.ModSt.2066) can be described as contracts:

FSR1:
Precondition:
System is in state OFF

Interaction:
I. - System receives the request "Button_Pressed" from the actor "Button".
III. System changes to state "ON".
IV. System responds to the actor "Light" with the command "Switch_Light_On".

Postcondition:
System is in state ON

FSR2:

Modelling Standard

© EULYNX Partners Page 23 of 119

ID

Eu.ModSt.2077

Eu.ModSt.2078

Eu.ModSt.2079

Requirement

Precondition:
System is in state ON

Interaction:
I. - System detects that the time "t_Light_ON" has expired.
III. System changes to state "OFF".
IV. System responds to the actor "Light" with the command "Switch_Light_OFF".

Postcondition:
System is in state OFF

The corresponding use case scenario in the form of a Main Success Scenario is depicted in Fgure 2078. FSR1 and FSR2 are written as contracts and as a consequence no Alternative Scenarios are required. As the precondition of
FSR2 is identical to the postcondition of FSR1 they are not explicitly depicted in the use case scenario.

Figure 2078 Main Success Scenario with FSR1 and FSR2 written as contracts

If it can not be assumed that the current state of the SUS is visible in its environment, the textually formulated functional requirement FSR1 is to be described as interaction without precondition. FSR2 may be described as
contract because the interaction is internally time-triggered and it is required that the current state may only be changed by this trigger:

FSR1:
Precondition:

Interaction:
I. - System receives the request "Button_Pressed" from the actor "Button".
II. System evaluates that the request is valid because it is in state OFF.
III. System changes to state "ON".
VI. System responds to the actor "Light" with the command "Switch_Light_On".

Postcondition:

Modelling Standard

© EULYNX Partners Page 24 of 119

ID

Eu.ModSt.2080

Eu.ModSt.2081

Eu.ModSt.2082

Requirement

System is in state ON

FSR2:
Precondition:
System is in state ON

Interaction:
I. - System detects that the time "t_Light_ON" has expired.
III. System changes to state "OFF".
IV. System responds to the actor "Light" with the command "Switch_Light_OFF".

Postcondition:
System is in state OFF

The corresponding use case scenario in the form of a Main Success Scenario is depicted in Figure 2081.

Figure 2081 Main Success Scenario with FSR1 not written as contract

As FSR1 is not written as a contract, action step 2 of the corresponding interaction may be evaluated as not valid. As a consequence, an alternative variant of the interaction has to be described:

FSR1:
Precondition:

Interaction:
I. - System receives the request "Button_Pressed" from the actor "Button".
III. System evaluates that the request is not valid because it is in state ON.

Modelling Standard

© EULYNX Partners Page 25 of 119

ID

Eu.ModSt.2083

Eu.ModSt.2084

Eu.ModSt.2085

Eu.ModSt.2086

Eu.ModSt.2087

Requirement

IV. System remains in state "ON".

Postcondition:
System is in state ON

FSR2:
Precondition:
System is in state ON

Interaction:
I. - System detects that the time "t_Light_ON" has expired.
III. System changes to state "OFF".
IV. System responds to the actor "Light" with the command "Switch_Light_OFF".

Postcondition:
System is in state OFF

The corresponding use case scenario in the form of an Alternative Scenario is depicted in Figure 2084.

Figure 2084 Alternative Scenario

8.1.2.1.4 Description method using state machines

State machines are used at abstraction level AL2 System Requirements to completely refine the stimulus-response behaviour which has been described by means of the use case scenarios at abstraction level AL1 System
Definition.

Figure 2088 shows a state machine specifying the stimulus-response behaviour of the UseCase "SysUC1.1: Switch on the light time-limited".

Modelling Standard

© EULYNX Partners Page 26 of 119

ID

Eu.ModSt.2088

Eu.ModSt.2089

Eu.ModSt.7013

Eu.ModSt.1659

Eu.ModSt.1662

Eu.ModSt.7101

Eu.ModSt.7102

Eu.ModSt.7103

Requirement

Figure 2088 FSR1 and FSR2 specified using a state machine

The declaration of this state machine is identical to the original textual requirements (see ID 93) FSR1 (Transition from state "OFF" to state "ON") and FSR2 (Transition from state "ON" to state "OFF"):

FSR1: The system shall switch on the light ("Switch_Light_On := TRUE") if the light is switched off (state "OFF") and the button is pressed ("when(Button_Pressed)").

The Transition from state "OFF" to state "ON" represents a functional system requirement and may be textually formulated in the requirements specification document as shown below:

Info | OFF
Req | when(Button_Pressed)/Switch_Light_On := TRUE {OFF - ON}
Info | ON

FSR2: The system shall switch off the light ("Switch_Light_OFF := TRUE") automatically after the time t_Light_On has expired ("after(t_Light_On)").

The Transition from state "ON" to state "OFF" represents a functional system requirement and may be textually formulated in the requirements specification document as shown below:

Info | ON
Req | after(t_Light_On)/Switch_Light_Off := TRUE {ON - OFF}
Info | OFF

8.1.3 Overview introduction to the EULYNX MBSE Process

The EULYNX MBSE process is part of the EULYNX systems engineering process with the main process tasks documented in the EULYNX verification and validation plan [31]. The EULYNX systems engineering process is closely
oriented on the CENELEC system life cycle defined in EN 50126 and covers the phases listed below:

Phase 1: Concept,
Phase 2: System definition,
Phase 4: System requirements,
Phase 5: Apportionment of system requirements,
Phase 10: System acceptance and
Phase 11: Operation and maintenance,

The CENELEC system life cycle follows the V-model, which highlights verification and validation, especially regarding the fulfilment of safety requirements, as important tasks.

Already during the specification phases of the V-model, verification and validation are important activities, applied to assure the quality of the specification itself.

This is especially necessary for the context of the EULYNX MBSE approach, where models of the required system behaviour represent abstract reference implementations of the future system (virtual prototypes) and are
regarded as mandatory requirements in tender specifications.

Following this notion, it is necessary to provide a “small V”-process, guiding the top-down development of those virtual prototypes using executable SysML state machines and their validation and verification within the
specification phases of the underlying “big V”-CENELEC process.

Modelling Standard

© EULYNX Partners Page 27 of 119

ID

Eu.ModSt.7104

Eu.ModSt.1658

Eu.ModSt.1539

Eu.ModSt.7469

Eu.ModSt.1555

Eu.ModSt.7105

Eu.ModSt.7931

Eu.ModSt.7470

Eu.ModSt.7471

Eu.ModSt.7472

Eu.ModSt.7473

Eu.ModSt.7474

Eu.ModSt.7475

Eu.ModSt.7476

Requirement

In Figure 1658, the "small V" is highlighted in the "big V" and pictures the relationships of verification and validation as part of the virtual prototype development.

Figure 1658 EULYNX "smal V" model

The AM MBSE essentially covers the "Formalised Requirements" and "State Machine Implementation" phases of the "small V" process. It defines the model views at abstraction levels AL1 and AL2 for the creation of:
⦁ specification models of subsystems (SUS) and
⦁ specification models of interfaces (SIUS).

The requirements at abstraction level AL3 of the AM MBSE are currently not defined in EULYNX in a model-based manner.

The behaviour of EULYNX SUS/SIUS is specified from the black box perspective. In a black box specification only the black box behaviour of the SUS/SIUS is considered, i.e. only the external properties of the SUS/SIUS are
defined (externally visible input/output behaviour).

User Requirements derived from infrastructure manager (IM) expert knowledge are represented in both cases in the requirements management tool in the form of a "Function List". It lists the required functions used as input
information for the creation of the model views at abstraction level "AL 1 Subsystem Definition” "or "Interface Definition" of the AM MBSE using the modelling tool.

If an architectural description of the overall system is available in the form of an analysis model, the model artefacts of the analysis model required for the creation of the respective EULYNX specification model are transferred to
the EULYNX specification model by model-to-model transformation.

At this point, the SUS use cases (services) are defined with their stimulus-response behaviour selectively specified by means of use case scenarios using SysML sequence diagrams (Formalised Requirements).

Subsequently, the conformity of the model to the SysML specification and the modelling rules defined in the EULYNX Modelling Standard is statically checked using the modelling tool by a modeler in the role of a model verifier.

Additionally, the use case scenarios are validated by means of inspection by the corresponding IMs in the roles of model validators.

In the next step, the system views created at abstraction level “AL 1 Subsystem Definition/Interface Definition” are refined at abstraction level “AL 2 Subsystem Requirements/Interface Requirements” by means of executable
SysML state machines (State Machine Implementation).

The conformity of the model to the SysML specification and the EULYNX Modelling Standard is verified tool-based and by means of inspection by the model verifier.

To implement the state machines as a virtual prototype, simulation code is generated. Subsequently, the GUI of the virtual prototype is designed, and an executable is created.

The executable representing the virtual prototype enables both the tool-independent standalone simulation of the specified behaviour and when connected to the simulation tool the simulation together with the animation of the
corresponding state machines.

Modelling Standard

© EULYNX Partners Page 28 of 119

ID

Eu.ModSt.7477

Eu.ModSt.7478

Eu.ModSt.7479

Eu.ModSt.7480

Eu.ModSt.7481

Eu.ModSt.7094

Eu.ModSt.7118

Eu.ModSt.7117

Requirement

The virtual prototype enables simulation-based testing of the specified behaviour by injecting stimuli on the GUI and observing the responses optically indicated. The principle of a virtual prototype is depicted in Figure 7481.

In the following step (State Machine Testing), the conformity of the behaviour defined by the state machines to the use case scenarios in the overlying abstraction level “AL1 Subsystem Definition/Interface Definition” is
dynamically verified by simulation-based testing of the virtual prototype carried out interactively by the model verifier.

For this purpose, the scenarios are used as test cases and in parallel, the animated state machines observed (white box testing of the behaviour). Additionally, the correct creation of the state machines such as freedom of
deadlocks is verified by the model verifier using interactive state machine animation based on a dedicated test specification.

The standalone virtual prototype is then handed over to the IMs to validate the behaviour specified by the state machine by means of simulation-based testing (black-box testing of the behaviour). The validation process is
finished successfully when all participating IMs provide evidence that their user requirements (including safety requirements) are satisfied by the specified behaviour. The successful validation process leads to the production of a
new baseline.

Figure 7481 Principle of a virtual Prototype

Figure 7116 shows the commonly used engineering paths for generating the model views of the SUS or SIUS specification models in conformity with the "small V" shown in Figure 1658. Depending on the project-specific input
conditions, the engineering paths can also be applied in a modified form.

In general, the engineering path for creating the SUS model views (black dashed arrows) includes the engineering path for creating the SIUS model views (red dashed arrows).

The model views used reflect the current state of the EULYNX MBSE methodology and may be complemented by further model views in the future (e.g. model views of the Technical Viewpoint or model views on AL3).

Modelling Standard

© EULYNX Partners Page 29 of 119

ID

Eu.ModSt.7116

Eu.ModSt.1549

Eu.ModSt.1241

Eu.ModSt.1630

Eu.ModSt.1557

Eu.ModSt.1623

Eu.ModSt.1628

Requirement

Figure 7116 Engineering paths of the EULYNX "smal V" model

The engineering path for creating the SUS model views starts at the Functional Viewpoint on abstraction level AL1.

Task (1): creation of model view "Functional Context"
Based on stakeholder requirements (for example IM requirements) which are defined in the area User Requirements of the MBSE SF, for example in the form of a function list, the model view "Functional Context" is created (1).

As shown in Figure 1633, the model view Functional Context summarises the use case structure graphically and names all use cases the SUS is expected to perform. Furthermore, it allocates the use cases to the SUS and defines
their interrelations as well as their relations to the actors in the SUS environment.

Use cases describe the functionality of a SUS such as "Subsystem Point" in terms of how it is used to achieve the goals of its various users. In model view "Functional Context" they are denoted by ellipses, and the actors
participating in the use cases are connected to the ellipses by solid lines.

The users of a system are described by actors, which can represent external systems such as "Point machine" or people who interact with the system.

Consequently, a use case does not contain any information how it is implemented in the SUS.

Modelling Standard

© EULYNX Partners Page 30 of 119

ID

Eu.ModSt.1633

Eu.ModSt.1622

Eu.ModSt.1653

Eu.ModSt.1634

Requirement

Figure 1633 Model view "Functional Context" of a SUS

Task (2): creation of model view "Use case scenarios"
Based on the definitions in the model view "Functional Context", the model view "Use case scenarios" is subsequently created.

A use case may be defined by one or more use case scenarios (SysML sequence diagrams) in order to describe the exchange of messages between the SUS and its environment. It is the central construct to define parts of
behaviour of the SUS that can be observed at the system boundary.

An example use case scenario of the use case "P_UC2.1.1.1: Commanding and reversing" is depicted in Figure 1635.

Modelling Standard

© EULYNX Partners Page 31 of 119

ID

Eu.ModSt.1635

Eu.ModSt.1629

Eu.ModSt.1535

Requirement

Figure 1635 Model view "Use case scenario" of a SUS

Task (3): creation of model view "Logical Context" of a SUS
Based on the definitions in the model views "Functional Context" and "Use case scenarios" the model view "Logical Context" is subsequently created at the Logical Viewpoint on abstraction level AL1.

In the example shown in Figure 1540 the model view "Logical Context" is depicted. It describes the structure of the SUS at the top level and the actors in the environment interacting with it and their quantity structure
(multiplicities). Furthermore, the logical interfaces such as SCI-P, SSI-P, P3 and so on between the SUS and the actors are defined.

Modelling Standard

© EULYNX Partners Page 32 of 119

ID

Eu.ModSt.1540

Eu.ModSt.1562

Eu.ModSt.7122

Eu.ModSt.1626

Eu.ModSt.7123

Requirement

Figure 1540 Model view "Logical Context" of a SUS

Task (4): creation of model view "Logical Context" of the interfaces to be standardised
Based on the definitions of the logical interfaces defined in model view "Logical Context" of a SUS, the model view "Logical Context" of its standardised interfaces (SIUS) is subsequently created at the Logical Viewpoint on
abstraction level AL1.

At the upper level of abstraction an interface is represented by a SysML association. An association is depicted as a continuous line between the communication participants. The association that represents a logical interface in
the model view "Logical Context" of the SIUS corresponds to the respective association in the model view "Logical Context" of the SUS.

The model view "Logical Context" of a SIUS as shown in Figure 1637 describes the logical view of an interface at the upper level of abstraction.

The SysML association is linked to a SysML association block, which serves to refine the relationship. The global behaviour of the application protocol (Railway Control Protocol: RCP) is then
specified in this later.

Modelling Standard

© EULYNX Partners Page 33 of 119

ID

Eu.ModSt.1637

Eu.ModSt.1627

Eu.ModSt.1636

Eu.ModSt.7901

Eu.ModSt.7319

Eu.ModSt.7320

Requirement

Figure 1637 Model view "Logical Context" of a SIUS

Task (5): creation of model view "Functional Partitioning" of the interfaces to be standardised
Based on the definition of the model view "Logical Context" of the relevant interfaces, the model view "Functional Partitioning" is subsequently created at the Functional Viewpoint on abstraction level AL1.

The model view "Functional Partitioning" as shown in Figure 1643 describes the refinement of the interface defined in model view "Logical Context" using FEs. These FEs specify the local behaviours (see chapter 8.2.4) of the
application layer (PDI: Process Data Interface Protocol) of the communication protocol stack on each side of the communication link.

The FEs are assigned to the involved subsystems via reference associations (marked with a white diamond). The reference associations express that the FEs are not part of the subsystems, but are only used there. They are part
of the PDI.

In addition, the respective possible number of FEs is determined by multiplicities.

The model view "Functional Partitioning" of a SIUS is the basis for the model view "Functional Architecture" of a SIUS. While the former, however, defines the absolute behaviour (the maximum possible number of FEs is
defined), the model view "Functional Architecture" also allows an excerpted description (Description of different configurations).

Modelling Standard

© EULYNX Partners Page 34 of 119

ID

Eu.ModSt.1643

Eu.ModSt.1640

Eu.ModSt.1927

Eu.ModSt.1537

Eu.ModSt.208

Eu.ModSt.7902

Eu.ModSt.7903

Eu.ModSt.7318

Eu.ModSt.1930

Requirement

Figure 1643 Model view "Functional Partitioning" of a SIUS

Since the FEs defined in the model view "Functional Partitioning" are used for the further specification of both the SUS and the SIUS, the engineering path splits at this point. The further creation of the model views takes place
along two different engineering paths, which are described in the following two subchapters 8.1.3.1 Engineering path SUS and 8.1.3.2 Engineering path SIUS.

8.1.3.1 Engineering path SUS

Task (6a): creation of model view "Functional Partitioning" of a SUS
Starting from the model view "Functional Partitioning" of the involved SIUS, the engineering path continues with the generation of the further model views of the SUS at the Functional Viewpoint at abstraction level AL2.

First, the model view "Functional Partitioning" of the SUS as depicted in Figure 1451 is created. It describes the refinement of the SUS by means of the FEs defined in the SIUS model view "Functional Partitioning", which
represent the local behaviours of the PDI, as well as the FEs specific to the SUS (linking behaviour according to chapter 8.2.4).

FEs which are assigned to the subsystem via reference associations (marked with a white diamond) are not part of the subsystem, but are only used there. They represent the local behaviour of the PDI and are part of it.

FEs which are assigned to the subsystem via composite associations, i.e. so-called whole-part relationships (marked with a black diamond) are part of the subsystem. They represent the specific behaviour of the subsystem that
influences more than one interface. This so-called "linking behaviour" is also used to link the behaviour assigned to the interfaces.

In addition, the respective possible number of FEs is determined by multiplicities.

The model view "Functional Partitioning" of a SUS is the basis for the model view "Functional Architecture" of a SUS. While the former, however, defines the absolute behaviour (the maximum possible number of FEs is defined),
the model view "Functional Architecture" also allows excerpted descriptions (Description of different configurations).

Modelling Standard

© EULYNX Partners Page 35 of 119

ID

Eu.ModSt.1451

Eu.ModSt.1647

Eu.ModSt.7322

Eu.ModSt.7463

Requirement

Figure 1451 Model view "Functional Partitioning"

Task (7a): creation of model view "Functional Entity" of a SUS
Based on the SUS-specific FEs defined in the model view "Functional Partitioning" of a SUS, the model view "Functional Entity" as shown in Figure 1644 is created for these FEs.

SUS-specific FEs represent control system functions such as "F_Control_Point" (see Figure 1644). They have executable SysML state machines and SysML block operations to describe behaviour. SysML state machines enable the
specification of finite discrete event dynamic behaviour. SysML block operations are used to perform logical or algebraic transformations.

The model view "Functional Entity" describes the behaviour or part of the behaviour of a SUS independent of technology.

Modelling Standard

© EULYNX Partners Page 36 of 119

ID

Eu.ModSt.1644

Eu.ModSt.1645

Eu.ModSt.7459

Eu.ModSt.7460

Requirement

Figure 1644 Model view "Functional Entity" of a SUS

Task (8a): creation of model view "Functional Architecture" of a SUS
Based on the model view "Functional Partitioning" of the SUS, the model view "Functional Architecture" is created.

The model view "Functional Architecture" as shown exemplarily in Figure 1646 describes the external visible stimulus-response behaviour of a SUS represented by a Logical Structural Entity (LSE) that is structured in a way that
enables an interface centric specification approach as described in chapter 8.2.4. The behaviour of the SUS is divided into FEs, which communicate with each other via internal interfaces and with the environment via external
interfaces.

The model view "Functional Architecture" describes the behaviour of a SUS independent of technology.

Modelling Standard

© EULYNX Partners Page 37 of 119

ID

Eu.ModSt.1646

Eu.ModSt.1654

Eu.ModSt.7461

Eu.ModSt.7462

Requirement

Figure 1646 Model view "Functional Architecture" of a SUS

Task (9a): creation of model view "Technical Functional Architecture" of a SUS
Based on the model view "Functional Architecture" of the SUS, the model view "Technical Functional Architecture" is created at the Technical Viewpoint on abstraction level AL2. This model view is only created if technical
functional requirements are to be described in a model-based manner.

The model view "Technical-Functional Architecture" of the SUS, as exemplified in Figure 1558, describes the externally visible stimulus-response behaviour of a SUS represented by one or more TSEs based on technical
requirements. The SUS is represented by a technical structural entity (TSE).

The technology-independent behaviour described in the Functional Viewpoint in the form of a Functional Architecture through FEs is complemented or substituted by technology-dependent behaviour in the form of TFEs. TFEs
are coupled with each other, with already defined FEs or with the environment via external technical interfaces.

Modelling Standard

© EULYNX Partners Page 38 of 119

ID

Eu.ModSt.1558

Eu.ModSt.1652

Eu.ModSt.7464

Eu.ModSt.1578

Eu.ModSt.341

Eu.ModSt.1649

Requirement

Figure 1558 Model view "Technical Functional Architecture" of a SUS

Task (10a): creation of model view "Technical Functional Entity" of a SUS
Based on technical requirements, the model view "Technical Functional Entity" as shown in Figure 1578 is created at the Technical Viewpoint on abstraction level AL2.

TFEs represent technology-dependent control system functions such as "F_Control_And_Observe_4W_PM" (see Figure 1578). As well as FEs, TFEs also have executable SysML state machines and SysML block operations to
describe behaviour. SysML state machines enable the specification of finite discrete event dynamic behaviour. SysML block operations are used to perform logical or algebraic transformations.

Figure 1578 Model view "Technical Functional Entity" of SUS

8.1.3.2 Engineering path SIUS

Task (6b): creation of model view "Functional Architecture" of a SIUS
Starting from the model view "Functional Partitioning" of the involved SIUS, the engineering path continues with the generation of the further model views of the SIUS at the Functional Viewpoint at abstraction level AL2.

Modelling Standard

© EULYNX Partners Page 39 of 119

ID

Eu.ModSt.7465

Eu.ModSt.7466

Eu.ModSt.1648

Eu.ModSt.1641

Eu.ModSt.7467

Eu.ModSt.7468

Requirement

First, the model view "Functional Architecture" of the SIUS as depicted in Figure 1648 is created. It defines the global behaviour of the application protocol. As described in chapter 8.2.4 the global behaviour is described by
connecting the local behavioural components referenced by a communication partner with the corresponding ones of the neighbour via communication channels.

The description of the global behaviour of the application protocol is done by the internal structuring of the association block defined in model view "Functional Partitioning" of the involved SIUS. In this process, the
communication partners, which in turn reference the local behavioural parts of the protocol represented by FEs, are referenced in the form of SysML participant properties and connected via their interfaces with connectors.

Figure 1648 Model view "Functional Architecture" of a SIUS

Task (7b): creation of model view "Information Flow" of a SIUS
Based on the defined interfaces in model view "Functional Architecture" of a SIUS the model view "Information Flow" is created. The model view "Information Flow" as shown in Figure 1567 describes the information objects to
be exchanged via an interface.

The information objects are represented by SysML signals such as "Cd_Move_Point". These signals can in turn have typed attributes such as "CommandedPointPositionState" that represent parameters of the information objects.
For example, the attribute "CommandedPointPositionState" is typed with the enumeration "PointPositionControlableState" with the available values "Left" and "Right".

The information objects are further refined into telegrams on AL3 of the AM MBSE. However, the telegrams are currently not yet implemented in a model-based way.

Modelling Standard

© EULYNX Partners Page 40 of 119

ID

Eu.ModSt.1567

Eu.ModSt.1642

Eu.ModSt.1579

Eu.ModSt.2121

Eu.ModSt.363

Requirement

Figure 1567 Model view "Information Flow" of a SIUS

Task (8b): creation of model view "Functional Entity" of a SIUS
After the information objects are defined, the model views "Functional Entity" are created for the FEs defined in the model view "Functional Partitioning" of a SIUS. These FEs such as "F_SCI_P_Report" (see Figure 1579)
represent the local behaviours of the RCP of the respective interface. They have executable SysML state machines and SysML block operations to describe behaviour. SysML state machines enable the specification of finite
discrete event dynamic behaviour. SysML block operations are used to perform logical or algebraic transformations.

Figure 1579 Model view "Functional Entity" of a SIUS

The following chapters describe general modelling rules (chapter 8.2) and the rules for creating the model views used to specify EULYNX SUS (chapter 8.3) and the ones used to define EULYNX SIUS (chapter 8.4). As the model
views "Functional Entity" and "Technical Functional Entity" are used for the specification of EULYNX SUS as well as for the specification of EULYNX SIUS they are described in the separate chapters 8.5 and 8.6.

8.2 Model views - General modelling rules

Modelling Standard

© EULYNX Partners Page 41 of 119

ID

Eu.ModSt.58

Eu.ModSt.60

Eu.ModSt.63

Eu.ModSt.1160

Eu.ModSt.1161

Eu.ModSt.1162

Eu.ModSt.1239

Eu.ModSt.1456

Eu.ModSt.7847

Eu.ModSt.7844

Eu.ModSt.2027

Eu.ModSt.2028

Requirement

The system requirements of a specification model (abstraction levels AL2 Subsystem Requirements and AL2 Interface Requirements) of the AM MBSE must be executable and provide a graphical user interface enabling model
simulation.

Before delivering derived specifications to the signalling system supplier, quality assurance must be completed by carrying out the verification and validation activities defined in the MBSE process.

Links to model elements embedded blue-coloured in model descriptions formulated in prose must not be put in quotation marks.

The related information, which is required to convoy the complete meaning of a model element, must be documented for each used model element in the modelling tool (e.g. Properties ->Text->Description).

Unless there are project-specific commitments, stereotypes such as <<block>>, <<ProxiPort>> and so forth may be shown on the diagrams if the modeller regards it as beneficial.

Unless there are project-specific commitments, data types such as Boolean, Integer, PulsedIn, PulsedOut and so forth may be shown on the diagrams if the modeller regards it as beneficial.

Shapes and colours of model elements presented in this modelling standard can be adapted according to project-specific commitments, unless explicitly required.
Example:
An actor basically is depicted as a stickman. It might be project-specifically determined to use the image of a cube if the actor represents a system and a "stickman" if the actor represents a person.

Project-specific requirements transcending the requirements of Modelling Standard are to be documented separately.

As shown in principle in Figure 7847, the AM MBSE is to be represented by the package structure in the modelling tool.

Figure 7844 Representation of the AM MBSE through the package structure

Viewpoint, abstraction level and model view of the AM MBSE name are made evident in the header of the diagram representing a certain model view.

Examples:
⦁ The view “Functional Context” depicted in Figure 2029 describing a certain aspect of system element Subsystem Light Signal by a SysML use case diagram (uc) belongs to the “Functional Viewpoint” and has the granularity of
abstraction level AL1 (Subsystem Definition).
⦁ The view “Functional Architecture” depicted in Figure 2029 describing a certain aspect of system element Subsystem Light Signal by a SysML internal block diagram (ibd) belongs to the “Functional Viewpoint” and has the
granularity of abstraction level AL2 (Subsystem Requirements).

Modelling Standard

© EULYNX Partners Page 42 of 119

ID

Eu.ModSt.2029

Eu.ModSt.7845

Requirement

Figure 2029 Structure of the diagram headings

As shown in Figure 7846 as an example, the packages in which the respective model elements are stored are to be displayed on the diagrams.

Modelling Standard

© EULYNX Partners Page 43 of 119

ID

Eu.ModSt.7846

Eu.ModSt.7707

Eu.ModSt.7065

Eu.ModSt.2030

Eu.ModSt.7060

Eu.ModSt.7061

Eu.ModSt.7062

Eu.ModSt.7063

Eu.ModSt.7064

Eu.ModSt.7937

Eu.ModSt.7896

Eu.ModSt.2031

Requirement

Figure 7846 Mapping the package structure onto the diagrams

In the following subsections 8.2.1, 8.2.2 and 8.2.3, the binding of requirements, the modelling pattern for interlocking systems supporting the EULYNX methodology and the basic structural model elements used are introduced.

8.2.1 Binding nature of the requirements and their structuring

The SUS and SIUS SysML specification models are stored in the repository of the modelling tool. Relevant artefacts of them are depicted in a traceable manner as surrogates in the requirement specification documents in the
form of atomic referenceable functional SUS or SUIS requirements.

Each of these atomised requirements is assigned a liability in the form of an object type. A distinction is made between the object types "Req", "Def", "Info" and "Head".

⦁ "Req": This denotes a mandatory requirement.

⦁ "Def": This denotes referenceable model elements that are used in the model-based creation of requirements

⦁ "Info": This denotes additional information to help understand the specification. These objects do not specify any additional requirements.

⦁ "Head": This denotes chapter headings.

Please note: State machines or several state machines linked together in a Functional Architecture define the totality of all functional requirements of an SUS or an SIUS in a coherent and consistent manner. State diagrams of
a corresponding state machine are marked with the object type “Req”. For the later design and implementation, it is not the description language SysML that is binding, but the domain-specific meaning expressed by it. The
specified behaviour can be converted into a vendor specific language but must retain the domain specific meaning describing the functional requirements. The specific model elements are additionally specified and defined by
object type “Def” to allow for traceability to supplier designs or test cases. The compliance of products to the specifications must be demonstrated by testing against EULYNX test cases, which are derived from the functionality
specified by the models.

Please note: The bindings assigned to each model view in this document can be adjusted on a project-specific basis. Thus, the bindings assigned in the specifications always apply.

A functional requirement consists of the respective SysML model element, for instance a SysML diagram, and if necessary, an additional extension of it.

Modelling Standard

© EULYNX Partners Page 44 of 119

ID

Eu.ModSt.2032

Eu.ModSt.2033

Eu.ModSt.2034

Eu.ModSt.2035

Eu.ModSt.2036

Eu.ModSt.7704

Eu.ModSt.220

Eu.ModSt.221

Eu.ModSt.222

Eu.ModSt.223

Eu.ModSt.224

Eu.ModSt.1237

Eu.ModSt.1163

Eu.ModSt.1164

Eu.ModSt.1165

Eu.ModSt.1166

Eu.ModSt.1167

Requirement

For this reason, functional requirements have two attributes "Requirement Part 1" and "Requirement Part 2", which are shown in adjacent columns (see Figure 2).

In "Requirement Part 1" the respective SysML model element is listed and in "Requirement Part 2" the corresponding extension is shown. Column 'Type' defines the bindingness of the requirement and applies normally both to
"Requirement Part 1" and "Requirement Part 2".

In the case of requirements with a binding character "Req", in which the "Requirement Part 2" is provided with the heading "Information", the defined binding character "Req" only applies to "Requirement Part 1".

Figure 2: "Requirement Part 1" and "Requirement Part 2" as shown in the requirement specifications.
ID Type Requirement Part 1 Requirement Part 2
Eu.LS.4687 Req Cd_Indicate_Signal_Aspect Command (Cd) from the Subsystem

- Electronic Interlocking to the
Subsystem - Light Signal to indicate
the transmitted Signal Aspect.

Just this partition of requirements is applied throughout the entire requirement specification document regardless of whether a requirement has its origins in the SUS or SIUS model or it is for example a text-based nonfunctional
requirement manually added.

8.2.2 Modelling Pattern for interlocking systems

Assuming that the stimulus-response behaviour of an overall interlocking system is immanently allocated to the infrastructure elements and encapsulated in each, the vertical slices of a Modelling Pattern for an overall
interlocking system as depicted in Figure 226, may be derived in form of a generic topological abstraction of the signalling infrastructure, i.e. following the geographical principle.

This assumption has already been verified by the implementation of the all-relay interlocking in which the logic of routes is designed following the geographical principle (e.g. the Sp DRS 60 interlocking of Siemens AG as
described in [18]).

The geographical principle considers the interconnection of distinct pieces of functionality, immanently encapsulated in the infrastructure elements (ISE), in the form of modules according to the signal layout plan (topological
abstraction of infrastructure).

Hence, the functional structure within each vertical slice of the Modelling Pattern for an overall interlocking system may be derived from ISE specific behaviour and interconnected according to the signal layout plan (see Figure
226).

Each of the vertical slices, i.e. each OE, represents the stimulus-response behaviour of a corresponding ISE.

The goal is to define the stimulus-response behaviour assigned to a vertical slice in a way that it fits into all valid variants of signal layout plans.

The OEs communicate as appropriate with one another, i.e. they exchange information.

Each information is sent out by a sender and received by one or multiple receivers. One of these is an OE; the other is an adjacent OE.

During its transmission, an information passes through a communication channel, which is the path through which the information travels from the sender to the receiver. This communication channel is assigned to the
connection domain (CD).

If the information is given directly by the sender to the receiver a communication channel may be abstracted without specifying any behaviour.

In other cases, the communication channel is significant because in it information may be delayed, lost, transformed into a format more convenient for the receiver or ordered in time. In these cases, the behaviour of the
communication channel is to be modelled explicitly.

Modelling Standard

© EULYNX Partners Page 45 of 119

ID

Eu.ModSt.226

Eu.ModSt.227

Eu.ModSt.1168

Eu.ModSt.1169

Eu.ModSt.1170

Requirement

Figure 226 vertical slices of the Modelling Pattern for interlocking systems

The layers of a Modelling Pattern for an overall interlocking system may be derived from architectural requirements based on the present architecture of an interlocking system [12] (see Figure 228):
⦁ Command Control Layer (acronym: C),
⦁ Safety Layer (acronym: S),
⦁ Field Layer (acronym: F).

The OEs exchange information between the different architectural layers as appropriate.

Each information has a sender and one or multiple receivers. One of these is a certain architectural layer of an OE; the other is the underlying or overlying architectural layer of this OE.

In the same way as between the vertical slices described above each information passes through a communication channel assigned to the CD. It connects sender and receiver and may have a behaviour or not.

Modelling Standard

© EULYNX Partners Page 46 of 119

ID

Eu.ModSt.228

Eu.ModSt.231

Eu.ModSt.1172

Eu.ModSt.232

Eu.ModSt.1292

Eu.ModSt.7705

Eu.ModSt.1294

Eu.ModSt.1293

Eu.ModSt.7706

Requirement

Figure 228 Architectural layers of the Modelling Pattern for interlocking systems

The Modelling Pattern for interlocking systems, as depicted in principle in Figure 230, consists of vertical slices representing the required stimulus-response behaviour of corresponding OEs such as "Light Signal" or "Point" and
adjacent vertical slices in which the behaviour of the CD is to be specified.

At the architectural layers C, S and F, the stimulus-response behaviour of the operational entities is put into the perspective of architectural requirements. The CD is to be specified at the underlying or overlying layer of the
architectural layer S, respectively.

Each cell of the so-defined matrix represents a piece of required stimulus-response behaviour of the corresponding OE, put into the perspective of architectural requirements inherent in the respective architectural layer.

This aforementioned behaviour is described in each cell by a FE or a number of FEs that are interconnected in a Functional Architecture.

A Functional Architecture divides the behaviour into Functional Entities, which communicate with each other via internal interfaces and with the environment via external interfaces.

A distinction is made between cells containing the behaviour assigned to OEs and those containing the behaviour of the CD.

The behaviour assigned to the CD specifies the communication channel (i.e. the global behaviour of the application protocol RCP) between cells containing the behaviour of adjacent OEs (see chapter 8.2.4 Interface centric
specification).

Channels without behaviour are represented by SysML connectors that connect the ports of the respective FEs.

Modelling Standard

© EULYNX Partners Page 47 of 119

ID

Eu.ModSt.230

Eu.ModSt.2091

Eu.ModSt.2092

Eu.ModSt.2093

Eu.ModSt.1243

Eu.ModSt.355

Eu.ModSt.205

Eu.ModSt.1101

Eu.ModSt.203

Eu.ModSt.354

Requirement

Figure 230 Principle of a Modelling Pattern for interlocking systems (simplified)

8.2.3 Introduction of the basic structural model elements

8.2.3.1 Logical Structural Entity (LSE)

A Logical Structural Entity (block in turquoise, stereotyped as <<logical structural entity>>) represents a system element from a logical point of view. It encapsulates either one or more LSEs interconnected in the form of a
Logical Architecture or one or more FEs interconnected in the form of a Functional Architecture.

LSEs representing architectural entities are applied in order to structure a SUS according to architectural aspects aiming at a logical system architecture solution independent from any technological constraints. This kind of
partitioning results in a glass box view of the SUS.

In a glass box specification the SUS is described as a collection of subsystems.

LSEs that are not required to be further decomposed by other LSEs are referred to as atomic LSEs.

The stimulus-response behaviour of a non-atomic LSE is represented by the interactions between its decomposed subcomponents and the interactions of those subcomponents with the interfaces of the SUS. These interactions
are described by use case scenarios.

Each atomic LSE encapsulates a piece of the "total" external visible stimulus-response behaviour of a SUS. This behaviour may be modularised by Functional Entities (black box view of a SUS).

In a black box specification only the black box behaviour of the system to be specified is considered, i.e. only the external properties of the system are defined (externally visible input/output behaviour).

Modelling Standard

© EULYNX Partners Page 48 of 119

ID

Eu.ModSt.2094

Eu.ModSt.2095

Eu.ModSt.2096

Eu.ModSt.1247

Eu.ModSt.1102

Eu.ModSt.2097

Eu.ModSt.2098

Eu.ModSt.2099

Eu.ModSt.2100

Eu.ModSt.2101

Eu.ModSt.2102

Eu.ModSt.2103

Eu.ModSt.2104

Requirement

Figure 9 Logical Structural Entity

8.2.3.2 Functional Entity (FE)

A functional entity (green block, stereotyped with <<functional entity>>) encapsulates a certain portion of technology-independent system behaviour of a system element.

FEs representing behavioural entities are applied to modularise the stimulus-response behaviour of an atomic LSE aiming at reusability and mastering the complexity. This kind of partitioning does not have any impact on system
architectural aspects i.e. the atomic LSE remains a black box. A FE is not further decomposable.

The syntactic interface of a FE defines primarily the signatures of the in ports and the out ports and as appropriate the signatures of block properties and block operations. The semantic interface specifies the stimulus-response
behaviour, i.e. the chronological order of stimuli and responses using a state machine. The syntactic interface as well as the semantic interface of a FE are explained in detail in the chapters 8.5 and 8.6.

A functional entity additionally stereotyped with <<assumption>>represents a set of assumptions which are not functional requirements. Assumptions are mainly used to restrict the environment of a FE.

Figure 10 Functional Entity

8.2.3.3 Environmental Structural Entity (ESE)

In the environment of a SUS, there may be other system elements belonging to the same overall system (subsystems) with which the SUS in question has a communication relationship. These system elements are described by
logical structural entities. However, the SUS can also have a relationship with system elements that are outside the associated overall system. These system elements are described by environmental structural entities (grey
block, stereotyped with <<environmental structural entity>>).

Figure 11 Environmental Structural Entity

8.2.3.4 Technical Structural Entity (TSE) or Technical Functional Entity (TFE)

Technical Structural Entity:
A Technical Structural Entity (yellow-coloured SysML block stereotyped with <<technical structural entity>>) encapsulates one or more TSEs in the form of a Technical Architecture or one or more TFEs interconnected in the
form of a Technical Functional Architecture based on technical requirements (<<hardware>>: TSE representing a hardware artefact, <<software>>: TSE representing a software artefact).

Technical Functional Entity:
A Technical Functional Entity (yellow-coloured SysML block stereotyped with <<technical functional entity>>) represents a certain piece of technology-dependent behaviour based on technical requirements in a Technical
Functional Architecture supplementing or substituting the technology-independent behaviour defined by FEs.

Modelling Standard

© EULYNX Partners Page 49 of 119

ID

Eu.ModSt.2105

Eu.ModSt.2106

Eu.ModSt.2107

Eu.ModSt.2108

Eu.ModSt.2109

Eu.ModSt.2112

Eu.ModSt.2113

Eu.ModSt.2114

Eu.ModSt.2115

Eu.ModSt.2116

Eu.ModSt.2117

Requirement

Figure 12 Technical Structural Entity or Technical Functional Entity

8.2.3.5 Information objects

Information objects are the objects that are exchanged between the respective communication partners via a communication relationship. They are formed from signals and values of the signals, the so-called attributes and are
made available or received at ports.

Ports are represented by small squares at the edge of a Functional Entity and represent the connections to the interfaces to other internal or external Functional Entities to which a communication relationship exists, or to
external interfaces. The port also indicates the arbitrary port name and interface type in the format "port name:interface type". Communication relationships between functional entities are assigned a reading direction. In the
case of ports, this is represented by the interface type being shown in conjugated form, i.e. by the symbol "~", on one side of the communication relationship.

8.2.4 Interface centric specification

By an interface centric approach, it is understood that the external visible stimulus-response behaviour (usage behaviour) of a SUS is largely described by the behaviours related to its interfaces. These behaviours are linked
together and supplemented by behaviour relevant for more than one interface by means of linking behaviour.

As depicted in Figure 2117, the models of the protocol stacks assigned to the communication interfaces are downscaled to the Process Data Interface protocols (PDI) defining the global PDI behaviours of the application layers
(e.g., SCI-AB PDI).

Global behaviour specifies the dependencies between the local PDI behaviours of the communication partners, that is the exchange of Process Data Units (PDU) between them in a chronological order.

The local PDI behaviours represent the behaviours of the communicating systems related to a certain interface.

The relation between local PDI behaviour and global PDI behaviour can be illustrated by a telephone call. The dialling is a local PDI behaviour at the initiator side, the ringing the associated local PDI behaviour at the partner
side. Only the global PDI behaviour defines that the dialling must precede the ringing (i.e., the chronological order).

Figure 2117 Global PDI behaviour

Modelling Standard

© EULYNX Partners Page 50 of 119

ID

Eu.ModSt.2118

Eu.ModSt.2119

Eu.ModSt.2120

Eu.ModSt.7952

Eu.ModSt.7953

Eu.ModSt.7954

Eu.ModSt.7955

Eu.ModSt.7956

Eu.ModSt.7957

Eu.ModSt.7958

Eu.ModSt.1509

Eu.ModSt.2124

Eu.ModSt.2125

Eu.ModSt.2123

Requirement

As the local PDI behaviours represent the interface behaviours of the communicating systems they may be specified in the model of the PDI.

As depicted in Figure 2120, in the model of a SUS such as System A, these local PDI behaviours are referenced and linked together (Linking Logic).

Figure 2120 Principle of interface centric specification

8.2.5 Functional packages

The EULYNX specifications are to be divided into functional packages in the requirements management tool used. This is intended to enable Infrastructure Managers (IM) involved to select requirements in a targeted manner and
thus apply the specifications to the desired capabilities of their products.

There are two types of packages that relate to product capabilities:
⦁ ‘Basic packages’, i.e. one or more packages, at least one of them must be implemented. It is allowed to combine and implement more than one ‘basic package’ in a product.
⦁ ‘Optional package’, i.e. one or more packages that can be optionally implemented in addition to one or more basic packages.

For the evaluation if a requirement is valid or not depending on the selected functional packages of an IM, the basic packages have an "or" relation and optional packages have an "and" relation to everything else. I.e. from
mathematical point of view: ("Basic P1" or "Basic P2" or "Basic Pn") and "Option P1".

The functional packages are to be allocated to the requirements in the requirements management tool used. The practical implementation of the allocation depends on the capabilities of the tool.

The SysML specification model must be structured in such a way that the required functional packages can be separated from the overall functionality in order to enable clear allocation as described above.

For example, functional packages can be formed by encapsulating certain behaviours in functional entities, which are then used or not in the corresponding functional architecture as required.

8.3 Model views used to specify EULYNX subsystems

Model view "Functional Context": Use case Diagram (uc)
The model view "Functional Context" defines the services to be provided by the SUS in the form of use cases. Relationships are used to represent which actors interact with which SUS use case.

Model view "Use case scenario": Sequence Diagram (sd)
The model view "Use case scenario" describes the behaviour of the use cases defined in the model view "Functional Context" at the upper level of abstraction by means of one or more use case scenarios.

Model view "Logical Context": Block Definition Diagram (bdd)
The model view "Logical Context" describes at the top level

⦁ the system/subsystem under specification (SUS),
⦁ the actors in the environment interacting with the SUS and their quantity structure (multiplicities)

as well as the logical interfaces between the SUS and the actors.

Modelling Standard

© EULYNX Partners Page 51 of 119

ID

Eu.ModSt.7708

Eu.ModSt.2126

Eu.ModSt.7720

Eu.ModSt.2127

Eu.ModSt.2128

Eu.ModSt.2129

Eu.ModSt.3550

Eu.ModSt.3495

Requirement

Model view "Functional Partitioning": Block Definition Diagram (bdd)
The model view "Functional Partitioning" describes the refinement of the SUS by means of the FEs defined in the SIUS model view "Functional Partitioning", which represent the local behaviours of the PDI, as well as the FEs
specific to the SUS (linking behaviour according to chapter 8.2.4).

Model view "Functional Architecture": Internal Block Diagram (ibd)
The model view "Functional Architecture" refines or completes the behaviour of an SUS defined in the model view "Use case scenarios". The behaviour of the SUS is divided into Functional Entities" (FE), which communicate with
each other via internal interfaces and with the environment via external interfaces. The FEs are defined in model view "Functional Partitioning".

Model view "Technical Functional Architecture": Internal Block Diagram (ibd)

The model view "Technical Functional Architecture" supplements the behaviour described in the model view "Functional Architecture", which is independent of technology, with behavioural components derived from technical
requirements. Either the entire behaviour can be described in a technical context or a mixture of functional and technical aspects.

Model views "Functional Entity" and "Technical Functional Entity": Internal Block Diagram (ibd) and State Machine (stm)

The model view "Functional Entity" encapsulates a subset of technology-independent functional requirements and the model view "Technical Functional Entity" a subset of technology-dependent functional requirements of a SUS
in the form of a function module. It delimits the function module from its environment and defines the inputs and outputs. In the discrete case, the behaviour of the FE is described by means of state machines. In this, the
binding functional requirements are specified in the form of state transitions. Both model views are described in the separate chapters 8.5 and 8.6.

Figure 2129 shows the engineering path of the model views used to specify a SUS considering the Functional Viewpoint, the Logical Viewpoint and the Technical Viewpoint. It describes the context of the model views, with the
arrows indicating which model views are developed from which. During the development of the model, the model views "Functional Context" (the Use Cases), "Use case scenarios" and "Logical Context" are created. These
model views form the basis for the description of the model views "Functional Partitioning", "Functional Architecture" and "Functional Entity". For the creation of the model view "Functional Partitioning", the FEs defined in the
model view "Functional Partitioning" of the SIUS are required (b: see Figure 2244 in chapter 8.4). In case technical requirements are to be considered, the model views "Technical Functional Architecture" and "Technical
Functional Entity" are created based on the model view "Functional Architecture".

Figure 2129 Engineering path to specify a EULYNX subsystem

8.3.1 Model View ''Functional Context'' of a SUS (AL1) - Description

The model view "Functional Context" as shown in Figure 3496 defines the services to be provided by the SUS in the form of use cases. On one or more SysML use case diagrams all subsystem use cases and their relationships to
the SUS environment and between the subsystem use cases themselves are depicted.

Modelling Standard

© EULYNX Partners Page 52 of 119

ID

Eu.ModSt.3497

Eu.ModSt.3498

Eu.ModSt.3499

Eu.ModSt.3500

Eu.ModSt.3501

Eu.ModSt.3496

Eu.ModSt.7711

Eu.ModSt.7713

Eu.ModSt.7715

Requirement

In the use case diagrams, the boundary (2) of the SUS (1) is shown as a frame with a dotted line.

The use cases of the SUS are shown as ellipses within the frame and have the name of the respective use case (3).

A use case describes a service a SUS provides to its environment and is specified by one or more interaction scenarios (model view "Use case scenario").

Use cases are connected by interaction connectors (7) to those actors in the SUS environment with whom they interact. An actor may represent another system (5) or a person (6).

Use cases may be connected to each other through include relationships (4), which are represented by arrows with a dashed line stereotyped with <<include>>. Such a relationship indicates that the interaction scenarios of the
use case at the arrowhead are included in the use case at the other end of the arrow. These included use cases encapsulate services that occur more than once, for example, and can also be included in other use cases.

Figure 3496 Example of SUS model view "Functional Context"

8.3.2 Model View ''Functional Context'' of a SUS (AL1) - Modelling rules

8.3.2.1 SysML Diagram

UseCase diagram (uc): depicts the model view "Functional Context" (one or more use case diagrams classified by domain motivated use case groups such as Start-up, Operation, Maintenance and so on).

Modelling Standard

© EULYNX Partners Page 53 of 119

ID

Eu.ModSt.7716

Eu.ModSt.7717

Eu.ModSt.1197

Eu.ModSt.1949

Eu.ModSt.1950

Eu.ModSt.1199

Eu.ModSt.1198

Eu.ModSt.1200

Eu.ModSt.1201

Eu.ModSt.1952

Eu.ModSt.1763

Eu.ModSt.1202

Eu.ModSt.1203

Eu.ModSt.1204

Eu.ModSt.1205

Eu.ModSt.1953

Eu.ModSt.1951

Eu.ModSt.1955

Eu.ModSt.1206

Eu.ModSt.728

Eu.ModSt.926

Requirement

Name of the Diagram:
uc[Package]<><System Name><>-<>Functional Context<>[Functional Viewpoint<>-<>Subsystem Definition<>-<><Use case group><>DiaNo].

Example:
uc[Package] Subsystem Light signal - Functional Context [Functional Viewpoint - Subsystem Definition - Initialization]

<Use case group> := <Main use case group><>-<><Sub use case group>

<Main use case group> := Broader term of the domain motivated group of services defined on the use case diagram

<Sub use case group> := Broader term of the subdomain motivated group of services defined on the use case diagram

Examples:
Operation
Operation - Direction

<DiaNo> := Number of use case diagram (Natural number starting with 1); optional to use

<Name of Frame Box> := <System block signature>

<Name of use case> := <UC designator>:<><Service to be described>

<UC designator> := <UC type>UC<DiaNo of uc>.<UCNo>

<UC type> := <Abbr. System type>

<UCNo> := Number of UseCase (Natural number).

<Service to be described> := The name of the service required by the system environment.

Example:
LS_UC1.4: Establish initial state of outputs

<Name of UseCase> (generic UseCase) := <Gen UC designator>:<><Service to be described>

<Gen UC designator> := <Gen UC type>UC<DiaNo of uc>.<UCNo>

<Gen UC type> := Gen | <Abbr. System group>

<Abbr. System group> := Freely selectable designator such as EfeS (EULYNX field element system) or AdjS (adjacent system)

Example:
EfeSUC1.2: Establish PDI connection
GenUC1.4: Establish PDI connection

8.3.2.2 Model elements

The model elements basically used to describe the model view "Functional Context" are depicted in Figure 746.

Modelling Standard

© EULYNX Partners Page 54 of 119

ID

Eu.ModSt.746

Eu.ModSt.729

Eu.ModSt.731

Eu.ModSt.1714

Eu.ModSt.1715

Eu.ModSt.1709

Eu.ModSt.1710

Eu.ModSt.1711

Eu.ModSt.1712

Eu.ModSt.744

Eu.ModSt.745

Eu.ModSt.1713

Requirement

Figure 746 Basically used model elements of model view "Functional Context"

Frame Box: Represents the boundary of the SUS the use cases are allocated to.

UseCase image: Depicts a UseCase on the use case diagram.

It may be project-specifically determined that for each use case one constraint may be added for each of the following definitions:
⦁ the Purpose,
⦁ the Primary Actor and
⦁ the Secondary Actor.

It may be project-specifically determined that the purpose of the UseCase is to be written in accordance with the following pattern:
This UseCase describes the <><UseCase Action><>of<><UseCase Object><>by<><UC Actor/s><><to do/ for doing><><summary of UseCase content>.
<Optional free text description to add details about UseCase content>.

Actor: As stated earlier, an actor specifies a role played by user or any other system that interacts with the system. Cockburn [22] distinguishes between primary and secondary actors.

Primary Actor: The primary actor of a use case is the stakeholder that calls on the system to deliver one of its services. It has a goal with respect to the system – one that can be satisfied by its operation. The primary actor is
often, but not always, the actor who triggers the use case.

Secondary Actor: The secondary actor of a use case is a stakeholder that the system needs assistance from to achieve the primary actor’s goal.

In other words, secondary actors may or may not have goals that they expect to be satisfied by the use case, the primary actor always has a goal, and the use case exists to satisfy the primary actor.

Interaction relationship: Connects the actors participating in the system use cases to the use case images (see Figure 746).

The interaction relationship is an abstract representation of the exchange of messages temporally ordered (information flow from and to the system) within the scope of the corresponding SUS use case.

It may be project-specifically determined that only the primary actors participating in the SUS use cases are connected to the use case images. Secondary actors may not be connected for the benefit of the diagram´s
readability.

Modelling Standard

© EULYNX Partners Page 55 of 119

ID

Eu.ModSt.1207

Eu.ModSt.747

Eu.ModSt.748

Eu.ModSt.749

Eu.ModSt.861

Eu.ModSt.750

Eu.ModSt.751

Eu.ModSt.752

Eu.ModSt.7075

Eu.ModSt.7754

Eu.ModSt.7077

Eu.ModSt.7894

Eu.ModSt.364

Eu.ModSt.3503

Eu.ModSt.3506

Eu.ModSt.3508

Eu.ModSt.3510

Eu.ModSt.3512

Eu.ModSt.3514

Eu.ModSt.3516

Eu.ModSt.3518

Eu.ModSt.3520

Eu.ModSt.3522

Requirement

Generalisation relationship: use cases can be classified using the standard SysML generalisation relationship. The meaning of classification is similar to that for other classifiable model elements. One implication, for example,
is that the use case scenarios for the general use case are also use case scenarios of the specialised use case. It also means that the actors associated with a specialised use case can also participate in use case scenarios
described by a general use case. Classification of use cases is shown using the standard SysML generalisation symbol (see Fig. 746).

Include relationship: An include relationship between two UseCases means that the sequence of behaviour described in the included use case is included in the sequence of the base (including) use case.

Please note: Include relationships are only to be used if absolutely necessary, whereas extends relationships are not to be used at all.

The included use case may be a primary use case as well as a secondary use case.

When including a use case, this use case shall be named in the description of the sequence.

A primary use case is a complete UseCase having a domain trigger, a result, and a primary actor.

A secondary use case is an incomplete use case fragment. This is a "piece" of use case that doesn't fulfil at least one of the criteria of a primary use case. It is modelled for example if its flow is part of several (primary) use
cases. This allows to avoid redundant descriptions or enables the structured merge of specific behaviour and generic behaviour. "Include" creates a relationship between primary and secondary use cases.

In the example depicted in Figure 3496, the system-specific use case "LS_UC1.3:Report status" is included in the generic UseCase " EfeSUC1.2: Establish PDI connection".

8.3.2.3 Binding (see chapter 8.2.1)

Diagram of model view "Functional Context" has an ''Info'' binding.

Use Case has an ''Info' binding if it is further specified in a refined model view.

Use Case has a ''Req'' binding if it is not further specified in a refined model view.

8.3.3 Model View ''Use case scenario'' of a SUS (AL1) - Description

The model view "Use case scenario" as shown in Figure 3504 defines the behaviour of the use cases defined in the model view "Functional Context" by means of one or more use case scenarios at the upper level of abstraction.
These use case scenarios describe the interaction between the SUS and the actors in the SUS environment using SysML sequence diagrams.

Use case name (1)
Name of the use case to which the interaction scenario belongs (e.g., LS_UC2.1: Indicate signal aspect).

Use case scenario name (2)
The use case scenario name is the name of a possible information flow (shown as a sequence diagram) within a use case (Main Success Scenario or Alternative Scenario).

Preconditions (3)
Preconditions are conditions that must be met and known to the actor triggering the stimulus for the scenario to start (see chapter 8.1.2.1.3).

Interaction (4)
An interaction consists of a sequence of steps, starting with a stimulus (prefixed by a dash "-"), a validation, possibly a state change and a reaction. In addition, combined fragments may be included. A use case scenario can
consist of one or more interactions. The structure of an interaction follows the principle of the Action Block Scheme as described in chapter 8.1.2.1.2.

Sequences and information flows (5)
Sequences consist of a text part describing the sequence and, in the case of an information flow, a graphical representation of the information flow in the form of arrows between the lifelines (11). In the text part, elements of
the model are shown in blue and explanatory text in black. In the graphical part, the corresponding exchange of information objects is shown accordingly. Here in the example (sequence 1), the information object
"Cd_Indicate_Signal_Aspect" is sent from the "Subsystem Electronic Interlocking" to "Subsystem Light_Signal". As it is a stimulus it is prefixed by a dash "-" in the text part of the sequence. In sequence 2, the validation of the
information object in the "Subsystem Light Signal" is described in the text part, without representation in the graphical part.

Postconditions (6)
Postconditions are conditions for which changes have resulted from the sequence diagram. Conditions that have already been mentioned in the preconditions are not listed here.

Actors (7)
Actors are systems (e.g., Subsystem Electronic Interlocking) or persons that interact with the SUS, i.e. trigger a stimulus and/or receive a response.

System under specification and System boundary (8)
The boundary between the system under specification (SUS) and the actors is symbolised by a thick grey bar. The SUS (9) is located to the right of the grey bar and the actors to the left.

Lifelines (10)
Lifelines represent the time axis of the SUS and the actors, with the time running from top to bottom.

Modelling Standard

© EULYNX Partners Page 56 of 119

ID

Eu.ModSt.3504

Eu.ModSt.756

Eu.ModSt.757

Eu.ModSt.758

Eu.ModSt.759

Eu.ModSt.760

Eu.ModSt.761

Eu.ModSt.1693

Requirement

Figure 3504 Example of SUS model view "Use case scenario"

8.3.4 Model View ''Use case scenario'' of a SUS (AL1) - Modelling rules

8.3.4.1 SysML diagram

Sequence Diagram:
A sequence diagram generally shows a stimulus-response behaviour, focusing on the temporal sequence of messages.

A sequence diagram depicting a use case scenario shows a specific sequence of messages, i.e. it represents a possible variant of a SUS use case.

In contrast to the complete stimulus-response behaviour of a SUS use case, described using a state machine, a use case scenario only represents a "flash light" view of this behaviour.

There are two variants of use case scenario layouts:
⦁ Variant 1: Use case scenario with frame (Figure 1690) and
⦁ Variant 2: Use case scenario without frame (Figure 6976).

It has to be project-specifically determined which variant to apply. The example scenarios in this document are depicted according to variant 2.

Modelling Standard

© EULYNX Partners Page 57 of 119

ID

Eu.ModSt.1690

Eu.ModSt.1691

Eu.ModSt.1695

Eu.ModSt.766

Eu.ModSt.1698

Eu.ModSt.1696

Eu.ModSt.1697

Eu.ModSt.1699

Requirement

Figure 1690 Variant 1: Use case scenario with frame

Variant 1: Diagram heading part 1
sd<><Abbr. System type>UC<DiaNo of UCD>.<UCNo>-<Scenario type><> [<Abbr. System ID><>SD<><DiaNo of UCD>.<UCNo>.<DiaNo of SD>]

Variant 1: Diagram heading part 2
<Scenario type>:<> <Scenario name>

A use case may be defined by one or more use case scenarios in the following compositions:
- one Main Success Scenario and any number of Alternative Scenarios,
- only one Main Success Scenario,
- any number of Alternative Scenarios without a Main Success Scenario.

Examples:
sd SubSUC2.1-Main Success Scenario [SubS LS SD 2.1.1]
Main Success Scenario: Indicate signal aspect

sd SubSUC2.2-Alternative Scenario [SubS LS SD 2.2.2]
Alternative Scenario: Illuminant failure

Variant 1: Diagram heading part 1 (generic UseCase Scenario)
sd<><Gen UC type>UC<DiaNo of UCD>.<UCNo>-<Scenario type><>[<Gen UC type><>SD<> <DiaNo of UCD>.<UCNo>.<DiaNo of SD>]

Variant 1: Diagram heading part 2 (generic UseCase Scenario)
<Scenario type>:<> <Scenario name>

Example:
sd GenUC1.2-Main Success Scenario [Gen SD 1.2.1]
Main Success Scenario: Establish PDI connection

sd EfeSUC1.2-Main Success Scenario [EfeS SD 1.2.1]
Main Success Scenario: Establish PDI connection

Modelling Standard

© EULYNX Partners Page 58 of 119

ID

Eu.ModSt.6976

Eu.ModSt.6977

Eu.ModSt.6978

Eu.ModSt.5269

Eu.ModSt.3562

Eu.ModSt.765

Eu.ModSt.1211

Eu.ModSt.1210

Eu.ModSt.1220

Eu.ModSt.791

Eu.ModSt.792

Requirement

Figure 6976 Variant 2: Use case scenario without frame

Variant 2: Diagram heading
<Scenario type>:<><Scenario name><> [<Abbr. System ID><>SD<> <DiaNo of UCD>.<UCNo>.<DiaNo of SD>]

Examples:
Main Success Scenario: Indicate signal aspect [SubS LS SD 2.1.1]
Alternative Scenario: Illuminant failure [SubS LS SD 2.1.2]

Variant 2: Diagram heading (generic UseCase Scenario)
<Scenario type>:<><Scenario name><> [<Gen UC type><>SD<> <DiaNo of UCD>.<UCNo>.<DiaNo of SD>]

Example:
Main Success Scenario: Establish PDI connection [Gen SD 1.2.1]
Main Success Scenario: Establish PDI connection [AdjS SD 1.2.1]

<Scenario type> := "Main Success Scenario" | "Alternative Scenario"
where the Main Success Scenario specifies the service to be provided when nothing goes wrong, and the Alternative Scenario describes deviations from the Main Success Scenario.

<Scenario name> := Unique designation of the scenario

<DiaNo of SD> := Number of sequence diagram (Natural number starting with 1).

<Interaction heading> := Interaction <Name of interaction>:

<Name of Interaction> := <DiaNo of UCD>.<UCNo>.<DiaNo of SD>.<IId>

<IId> := Id of an Interaction (Capital letters starting with "A"; if there are more than one Interactions on a scenario, the letter rises along the alphabet)

Modelling Standard

© EULYNX Partners Page 59 of 119

ID

Eu.ModSt.793

Eu.ModSt.772

Eu.ModSt.762

Eu.ModSt.763

Eu.ModSt.773

Eu.ModSt.927

Eu.ModSt.1278

Requirement

Example:
Interaction 2.1.1.A:
1. - ...
2. ...
Interaction 2.1.1.B:
3. - ...
4. ...

8.3.4.2 SysML model elements

The model elements used to describe the model view "Use case scenario" and the structural principle are depicted in Figure 763.

Figure 763 Model elements and structural principle of a use case scenario

As depicted in Fig. 763, a sequence diagram describing a UseCase scenario consists of the following vertical segments:
- Description area,
- Lifelines of actors,
- System boundary,
- Lifeline of the system.

Description area:
In the vertical segment "Description area" the action steps of the scenario are to be described.

Lifelines:
The principal structural feature a of a scenario is the lifeline. A lifeline represents the relevant lifetime of a property of the scenario's owning block, which will be either a SysMl part or a SysML reference property. A part can be
typed by an actor, which enables actors to participate in scenarios as well.

Modelling Standard

© EULYNX Partners Page 60 of 119

ID

Eu.ModSt.928

Eu.ModSt.774

Eu.ModSt.775

Eu.ModSt.776

Eu.ModSt.777

Eu.ModSt.778

Eu.ModSt.1705

Eu.ModSt.1706

Eu.ModSt.1707

Eu.ModSt.1708

Eu.ModSt.779

Eu.ModSt.780

Eu.ModSt.782

Eu.ModSt.786

Eu.ModSt.787

Requirement

Lifelines of actors:
In the vertical segment Lifelines of actors, the actors of the system are to be arranged. This section may be empty.

Lifeline of the system:
The vertical segment Lifeline of the system is represented by an instance of the block describing the structure of the system such as "Subsystem Light Signal".

Please note: The instance of the block has to be created once and used in all corresponding sequence diagrams.

Architectural boundary:
The architectural boundary (dashed vertical line depicted as default at any sequence diagram) is to be arranged to the right of the vertical segment "System" and overlaid by a white-coloured note.

A Use case scenario of a primary Use Case is to be structured horizontally as depicted in Fig. 763.

Precondition:
After the declaration of the diagram heading, the preconditions are to be stated.

General rules for pre- and postconditions:
Pre-and postconditions are to be defined in the following order:

1. States (if defined) of objects involved in the sequence,
2. States of timers (e.g. The Subsystem – Point monitors the Timevalue “Con_tmax_Point_Operation”) involved in the sequence,
3. All other conditions of objects, which are required before proceeding the sequence (in case of preconditions) or which are achieved after completing the sequence.

When objects are named in pre-or postconditions, the following order is to be followed:
1. Itinerary
2. Train Unit / Infrastructure Element
3. Vehicle

When nested states of objects (refer to ABB.4.250) are named in pre-or postconditions, all nested and parent states are to be named.

With the aforementioned rules, the pre-and postconditions are to be structured as follows:
<Pre/Post>conditions
<Object 1 is in state 1>.
...

<Object 1 is in state n>.
…

<Object 2 is in state 1>.
...
<Object 2 is in state n>.
...
<Object m is in state n>.
...
<Conditions 1>.
...
<Conditions n>.

Preconditions denote what must be true before the UseCase runs. The preconditions are stated at this place if they are expected to be known by the initiator of the stimulus of the first interaction of the UseCase.

The preconditions are to be structured as follows:
Precondition:
<Precondition 1>.
...
<Precondition n>.

If there are no preconditions to be stated, three hyphens are to be depicted instead of them:
Precondition:

There may be cases when a precondition is not expected to be known by the initiator of the stimulus. In those cases, the precondition is to be described as validation condition at action step 2 within the first interaction
according to the action block schema (see chapter 8.1.2.1.2).

If stated at this place, alternative scenarios may be derived from that precondition.

Modelling Standard

© EULYNX Partners Page 61 of 119

ID

Eu.ModSt.789

Eu.ModSt.1279

Eu.ModSt.790

Eu.ModSt.794

Eu.ModSt.795

Eu.ModSt.797

Eu.ModSt.796

Eu.ModSt.799

Eu.ModSt.800

Eu.ModSt.7941

Eu.ModSt.888

Requirement

The preconditions are followed by the occurrence specifications. A lifeline is related to an ordered list of occurrence specifications that describe what can happen to the instance (e.g. Subsystem Light Signal) represented by the
lifeline during the execution of the scenario.

Those occurrences are specified by action steps structured by one or more interactions according to the structure depicted in Figure 763.

Interaction:
An interaction represents a functional system requirement structured according to the action block schema as described in chapter 8.1.2.1.2. It is understood as an interaction contract as introduced in chapter 8.1.2.1.3.

An interaction is to be invoked at its first action step
- by a stimulus from an actor of the system,
- by a timed trigger,
- by an internal trigger (that is, an event that occurs in the system) or
- when entering or leaving a system state.

The invoking of an interaction by a stimulus from an actor of the system is to be described as an information flow from the actor in the system environment to the system as depicted in Figure 796.

The response of the system to an actor (primary actor or secondary actor) is to be described as an information flow from the system to the actor in the system environment as depicted in Figure 796.

Figure 796 Information flow across the system boundary

The information flows are to be defined using SysML Item Flows or SysML signal events (in the following referred to as IO Flows) .

The data types of the SysML Item Flows are to be hidden on the sequence diagram unless there is a project-specific commitment.

When using SysML signal events as IO Flows, the parameter values can also be displayed.
Example: Msg_TVPS_Occupancy_Status(Vacant, Unable to be forced to clear, Command from EIL).

An IO Flow which represents a permanent information flow is only to be depicted on the diagram as demonstrated in Figure 932 if this information flow has changed.

Modelling Standard

© EULYNX Partners Page 62 of 119

ID

Eu.ModSt.932

Eu.ModSt.931

Eu.ModSt.930

Eu.ModSt.1267

Eu.ModSt.1274

Eu.ModSt.1268

Eu.ModSt.1269

Eu.ModSt.1270

Requirement

Figure 932 Stimulus changes permanent information flow

In the example depicted in Figure 930, the stimulus "button_pressed" does not change the permanent information flow "light_on". Thus, the IO Flow "light_on" is not depicted on the diagram.

Figure 930 Stimulus does not change permanent information flow

Representing time on a sequence diagram:
In a sequence diagram, time progresses vertically down the diagram and occurrences on a lifeline are correspondingly ordered in time. In addition, the send occurrence and receive occurrence for a single message are also
ordered in time.

Time observation and duration observation:
In addition to relative ordering in time, time can be represented explicitly on sequence diagrams. A time observation refers to an instant in time corresponding to the occurrence of some event during the execution of the
scenario, and a duration observation refers to the time taken between two instants during the execution of the scenario.

Time constraint and duration constraint:
A time constraint and a duration constraint can use observations to express constraints involving the values of those observations. A time constraint identifies a constraint that applies to a single occurrence on the sequence
diagram. A duration constraint identifies two occurrences, called start and end occurrences, and expresses a constraint on the duration between them. A duration constraint can apply to any element deemed to have duration,
such as a message or an execution, in which case the constraint applies between the occurrences that bracket the element's duration.

A time constraint is shown using a standard constraint expression in braces attached by a dashed line to the constrained occurrence.

A duration constraint is shown by a double-headed arrow between the two constrained occurrences with the constraint floating near it, also expressed in standard constraint notation (i.e. in braces). A duration constraint may
also be shown as a standard constraint floating close to an element such as a message.

Modelling Standard

© EULYNX Partners Page 63 of 119

ID

Eu.ModSt.1277

Eu.ModSt.1275

Eu.ModSt.7940

Eu.ModSt.1272

Eu.ModSt.804

Eu.ModSt.1221

Eu.ModSt.1276

Requirement

Observations are shown in a way similar to constraints, but instead of an expression in braces, an observation has the name of the observation followed by an equal sign and then an expression indicating how the value for the
observation is obtained.

An example of representing time on a sequence diagram is shown in the scenario depicted in Figure 1272. A time observation, t, is taken at the point when the button is pressed using the expression "t = now". The time
constraint {t + 1 ms..t + 2 ms} indicates that the message receipt must occur between 1 ms and 2 ms after t. The total time taken between pressing the button and switching on the light should be not more than 10 ms, as
indicated by the duration constraint between action step 1 and action step 4. The duration between pressing the button and receiving the corresponding message is observed via a duration observation d, and there is a
constraint ({d..d*2}) on the response "light_on" to not exceed 2 times the duration d.

Please note: always use “<=” instead of “<”.

Figure 1272 Example of representing time on a sequence diagram

Timed trigger (timer):
A timed trigger indicates that a given time interval has passed since the occurrence of some event, such as entering a state (internal trigger) or receiving a request during the execution of the scenario.

The term "after" followed by the time such as "after {10 sec}", or "after{t_con_t_max}" indicates that the time is relative to the moment of an occurrence.

An example of a timed trigger is shown in the scenario depicted in Figure 805. The system responses with "light_on" 10 sec after the state ON has been entered.

Modelling Standard

© EULYNX Partners Page 64 of 119

ID

Eu.ModSt.805

Eu.ModSt.806

Eu.ModSt.807

Eu.ModSt.7939

Eu.ModSt.7943

Eu.ModSt.808

Eu.ModSt.809

Eu.ModSt.855

Eu.ModSt.856

Eu.ModSt.810

Requirement

Figure 805 Example of a timed trigger

Internal trigger:
An internal trigger is described as demonstrated in the following example:
1. -The SubS LS detects a change of the indicated signal aspect.

A stimulus created by entering or leaving a system state is to be described as demonstrated in the following examples.
1. - SubS LS enters the state OPERATING.
1. - SubS LS exits the state OPERATING.

The graphical representation of the time behaviour as shown in figure 1272 and figure 805 can be supplemented by a description in the description area of the sequences. "t_con_t_max" represents the defined time period
(duration):
⦁ Start of timer should be mentioned within the corresponding step (trigger).

⦁ “Subsystem X starts to monitor the time period “t_con_t_max”.”
⦁ Reaction for timer that shall be waited for --> where possible combine within corresponding step otherwise keep it separate.

⦁ “Subsystem X detects that time period “t_con_t_max” has expired.”
⦁ Reaction for timer that has been exceeded (unintended case) --> where possible combine within corresponding step otherwise keep it separate.

⦁ “Subsystem X detects that time period “t_con_t_max” has exceeded.”
⦁ Restart of a timer within the corresponding step (trigger).

⦁ “Subsystem X stops to monitor time period “t_con_t_max” caused by first command and starts to monitor the time period ““t_con_t_max” caused by second command.”
⦁ Reset of a timer within the corresponding step (trigger).

⦁ “Subsystem X stops to monitor time period “t_con_t_max”.”

Time periods shall be defined using block properties without further specification of the values. The values to be used shall be specified separately in the requirements management tool (chapter 5.3 Configuration and
engineering data) as binding requirements and linked to the corresponding definitions.

Combined fragments:
In order to parallelize interactions as well as action steps of an interaction or define alternatives or loops, combined fragments defined by the Operators "par", "alt" or "loop" may be used.

In sequence diagrams, combined fragments are logical groupings, represented by a rectangle, which contain the conditional structures that affect the flow of messages. A combined fragment contains operands and is defined by
operators (see Figure 812 and Figure 935).

Operands are separated by dashed lines.

Depending on the operator, there is a guard containing a constraint expression that indicates the conditions under which it is valid for the operand to begin execution. Guards appear at the beginning of the combined fragment
following the corresponding operator (example: alt [Guard]).

The operator identifies the type of logic or conditional statement that defines the behaviour of the combined fragment.

Modelling Standard

© EULYNX Partners Page 65 of 119

ID

Eu.ModSt.811

Eu.ModSt.857

Eu.ModSt.812

Requirement

Operator "par"
In the example depicted in Figure 812, the usage of the operator "par" is demonstrated. The message Msg_Response_3 is parallelized to Msg_Response_1 followed by Msg_Response_2 using two par operands.

If a par operand consists of more than one action step, the action steps are structured according the following schema (see also Figure 812):
par
 3.a1 action step.
 3.a2 action step.
 3.ax ...
also par
 3.b1 action step.
 3.b2 action step.
 3.bx ...
also par
 3.c1 action step.
 3.cx...
end par

Figure 812 Example of a combined fragment defined by the operator "par"

Modelling Standard

© EULYNX Partners Page 66 of 119

ID

Eu.ModSt.813

Eu.ModSt.1255

Eu.ModSt.1700

Eu.ModSt.1701

Requirement

Interactions are to be parallelized according to the following schema (see also Fig. 1255):
par
 Interaction <Name of the interaction>
 4.a1 - action step.
 4.a2 action step.
 Interaction <Name of the interaction>
 4.a3 - action step.
 4.a4 action step.
 4.ax ...
also par
 Interaction <Name of the interaction>
 4.b1 - action step.
 4.b2 action step.
 4.bx ...
end par

Figure 1255 Operator "par" with nested interactions

Operator "par-strict"
The keyword "strict" is defined as extension to the operator "par":

⦁ Semantics: If the "par" operator of a combined fragment is extended by the keyword "strict", all operands must be executed strictly parallel. This means that IOFlows are sent at the exact same time and included or
extended UseCases are invoked at the same time and terminated at the same time.
⦁ Syntax: Extend keyword "par" in sequence text as well as in graphical frame box by "-strict"

In the example in Fig.1702, the usage of the extension "strict" of the operator "par" is shown.

Modelling Standard

© EULYNX Partners Page 67 of 119

ID

Eu.ModSt.1702

Eu.ModSt.1703

Eu.ModSt.936

Eu.ModSt.1704

Eu.ModSt.814

Requirement

Figure 1702 Example for the application of the extended operator "par-strict"

If a "par-strict" operand consists of more then one action step, the action steps are structured according the following schema:
par-strict
 3.a1 action step.
 3.a2 action step.
 3.ax ...
also par-strict
 3.b1 action step.
 3.b2 action step.
 3.bx ...
also par-strict
 3.c1 action step.
 3.cx...
end par-strict

Operator "alt"
In the example depicted in Figure 935, the utilisation of the operator "alt" is demonstrated in the way that exactly one of its operands is selected based on the value of its guard. The guard on each operand is evaluated before
selection, and if the guard on one of the operands is valid, that one is selected. If more than one operand has a valid guard, the selection is nondeterministic. An optional else fragment (else fragment without guard) is valid only
if none of the guards on the other operands are valid.

In case no guard of an alt operand is valid then no operand is executed, unless an optional else fragment without a guard is defined, in which case that operand is selected.

If an alt operand consists of more then one action step, the action steps are structured according the following schema (see also Figure 935):
alt [Guard 1]
 3.a1 action step.
 3.a2 action step.
 3.ax...
else alt [Guard 2]
 3.b1 action step.
 3.b2 action step.
 3.bx...
end alt

Modelling Standard

© EULYNX Partners Page 68 of 119

ID

Eu.ModSt.935

Eu.ModSt.937

Requirement

Figure 935 Example of a combined fragment defined by the operator "alt"

Interactions are to be used in alt operands according to the following schema (see also Figure 1256):
alt [Guard 1]
 Interaction <Name of the interaction>
 4.a1 - action step.
 4.a2 action step.
 Interaction <Name of the interaction>
 4.a3 - action step.
 4.a4 action step.
 4.ax ...
else alt [Guard 2]
 Interaction <Name of the interaction>
 4.b1 - action step.
 4.b2 action step.
 4.bx ...
end alt

Modelling Standard

© EULYNX Partners Page 69 of 119

ID

Eu.ModSt.1256

Eu.ModSt.854

Eu.ModSt.1983

Eu.ModSt.858

Eu.ModSt.859

Requirement

Figure 1256 Operator "alt" with nested interactions

Please note: the guards of the alt operands are not to be depicted inside the combined fragment but only in the textual description of it.

Operator "opt":
The operator "opt" (optional sequence) is equivalent to the operator "alt" with only one operand. This implies that the operand is either executed or skipped depending on the validity of the guard (condition).

Operator "loop":
A loop is specified by the interaction operator "loop" in which the trace represented by its operand repeats until its termination constraint is met. It may define lower and upper bounds on the number of iterations as well as the
guard expression. As shown in Figure 1257, these bounds are documented in brackets after the loop keyword as (minimum, maximum or termination condition), where the maximum (upper bound) may have the value *
indicating an unlimited upper bound.

A combined fragment describing a loop is to be structured according to the following schema (see also Figure 1257):
loop (minimum, maximum or termination condition)
 1. action step.
 2. action step.
 3. action step.
 4. ...

Modelling Standard

© EULYNX Partners Page 70 of 119

ID

Eu.ModSt.1257

Eu.ModSt.860

Eu.ModSt.1261

Requirement

Figure 1257 Example of a combined fragment defined by the operator "loop"

Note: the (minimum, maximum or termination condition) of the loop operand is not to be depicted inside the combined fragment but only in the textual description of it.

As shown in Figure 1258 and Figure 1259 the operands of combined fragments may themselves contain combined fragments, and thus can be composed into a tree hierarchy.

Modelling Standard

© EULYNX Partners Page 71 of 119

ID

Eu.ModSt.1258

Requirement

Figure 1258 Operators "par" and "alt" with nested operators

Modelling Standard

© EULYNX Partners Page 72 of 119

ID

Eu.ModSt.1259

Requirement

Figure 1259 Operator "loop" with nested operators

Modelling Standard

© EULYNX Partners Page 73 of 119

ID

Eu.ModSt.7961

Eu.ModSt.815

Eu.ModSt.816

Eu.ModSt.1222

Eu.ModSt.938

Eu.ModSt.3547

Eu.ModSt.3548

Eu.ModSt.7949

Eu.ModSt.7950

Requirement

Multiple instances of the same type
The behaviour of the SUS may interact with multiple instances of the same type of a subsystem, adjacent system or actor. One example is the subsystem point interacting with multiple point machines. In such cases, often
either:
1) all instances (or no instance) of a group of instances of the same type must fulfil a certain condition in order to induce a certain behaviour of the SUS
2) at least one instance of a group of instances of the same type must (or must not) fulfil a certain condition in order to induce a certain behaviour of the SUS

Multiple instances of the same type of a subsystem, adjacent system or actor, are modelled as described below:
⦁ Exactly two instances of the subsystem, adjacent system or actor are shown in the sequence diagram, labelled as ‘1st’ and ‘n-th’. In case of additional multiple sets, the ‘n’ is replaced by other available characters.
⦁ The two instances jointly represent a set of instances with multiplicity 2 or higher. All represented interactions for the two instances must be interpreted together. The instance represented as ‘1-st’ does not represent

any specific instance within the set.
⦁ In the interaction that refers to a condition of the instances, use a combined fragment as follows:

⦁ If an "all instances" (or "no instances") condition shall be represented, use a "par" fragment with two legs testing the condition on the "1st" and on the "n-th" instance. The interactions with all instances of the
set are to be interpreted as "AND"-connected.

⦁ If an "at least one instance" condition shall be represented, use an "alt" fragment with two legs testing the condition on the "1st" and on the "n-th" instance. The interactions with all instances of the set are to be
interpreted as an "OR"-connected.

Postcondition:
The postconditions positioned after the last interaction of a scenario representing the results of a UseCase are to be structured as follows:
Postcondition:
<Postcondition 1>.
...
<Postcondition n>.

Example (see Fig. 715):
Postcondition:
SubS LS indicates the commanded signal aspect.

Postconditions which equal preconditions are not to be stated.

If there are no postconditions to be stated, three hyphens are to be depicted instead of them:
Postcondition:

Include relationship
As shown in Figure 3549 an <<include>> relationship can be used to jump from an interaction scenario to the interaction scenario of an included use case (e.g., SubSUC1.3: Report status). The text part and the include symbol
(1) indicate which use case is to be accessed. After processing the included interaction scenario, the original interaction scenario is continued.

Alternatively to the include symbol (1) an "interaction use" (2) may be used to indicate which included interaction scenario is to be accessed. "Interaction uses" are shown as frames with the keyword "ref" in the frame label.
The body of the frame contains the name of the referenced interaction scenario.

For each SD that is referenced in another SD, a notice must be inserted in the modelling tool (e.g. Properties ->Text->Description) that corresponds to a defined schema:
⦁ This SD is part of [referred SD].

The notice is to be transferred to "Requirements Part 2" of the specification document generated in the requirements management tool.

Modelling Standard

© EULYNX Partners Page 74 of 119

ID

Eu.ModSt.3549

Eu.ModSt.7084

Eu.ModSt.7753

Eu.ModSt.7938

Eu.ModSt.7942

Eu.ModSt.7944

Eu.ModSt.2131

Eu.ModSt.2132

Eu.ModSt.2136

Eu.ModSt.7880

Eu.ModSt.2139

Eu.ModSt.2140

Eu.ModSt.2141

Eu.ModSt.2142

Requirement

Figure 3549 Include relationship in interaction scenarios

8.3.4.3 Binding (see chapter 8.2.1)

Diagram of model view "Use case scenario" has an ''Info'' binding if it is further specified in a refined model view (e.g. through a state machine).

Diagram of model view "Use case scenario" has a ''Req'' binding if it is not further specified in a refined model view.

The definitions of time periodes (e.g. Con_tmax_PDI_Connection) represented by block properties have "Def" bindings.

The values of the defined time periods, which are specified and linked separately in the requirements management tool, have "Req" bindings.

8.3.5 Model View ''Logical Context'' of a SUS (AL1) - Description

The model view "Logical Context" as shown in Figure 2134 represents the environment of the SUS and provides initial information about the SUS boundaries and the relationships to the interaction partners. This diagram
contains the following definitions relevant to implementation:
⦁ Interaction partners: the representation of the interaction partners as actors with whom the SUS concerned must be able to interact,
⦁ Logical SUS interfaces:

- number of required logical interfaces represented by associations to interaction partners in the SUS environment defined by means of multiplicities at the association ends
- possible directions of the interaction (uni- or bidirectional).
- kinds of interfaces such as SCI-P, SMI-P and so on defined by means of roles at the association ends.

Interaction partners
Interaction partners (4, 5) of the SUS (1) are represented by actors. An actor describes a person (for example "Maintainer") or another system (for example the "Subsystem - Electronic Interlocking) in the role of a user of
services offered by the SUS concerned (here "Subsystem Point"). At the logical viewpoint actors are represented by logical structural entities if they are in the context of a system element belonging to the same overall system. If
an actor in the context of a system element is outside of the overall system of this system element (adjacent system) it is represented by an environmental structural entity.

Figure 2134 therefore includes for example the following related definitions:
⦁ system element "Subsystem Electronic Interlocking" represented by a logical structural entity (LSE) assumes the role of an actor in the environment of "Subsystem Point" belonging to the same overall system (4).
⦁ system element "Point machine" represented by an environmental structural entity (ESE) assumes the role of an actor in the environment of "Subsystem Light Signal" not belonging to the same overall system (5).

Logical SUS Interfaces
The connection between the SUS (represented by a logical structural entity) and an actor represents a logical interface (2, 3). It is depicted as an association that is a continuous line between the actor and the SUS. It
represents the definition that the SUS must be able to interact with the connected actor through a corresponding logical interfaces.

The association also represents the possible interaction directions of the interface. No arrow heads means that the interaction is bidirectional. An arrow head on the other hand indicates that an interaction is only possible in the
direction of the arrow.

On the side of the actor of the association, a multiplicity indication describes in more detail with how many of the respective actors the SUS concerned must be able to interact i.e., how many logical interfaces are required.

The definition of the quantity of each actor by means of multiplicities represents an important requirement regarding system development. It is obvious that it makes a difference, for example, whether the system depicted in
Figure 2134 requires an interface to one "Subsystem Electronic Interlocking" or to several.

Modelling Standard

© EULYNX Partners Page 75 of 119

ID

Eu.ModSt.2143

Eu.ModSt.2144

Eu.ModSt.7881

Eu.ModSt.7745

Eu.ModSt.7882

Eu.ModSt.2134

Requirement

The multiplicity "1" is defined at the SUS side of the association. The reason for this is that only requirements for the SUS concerned may be phrased in the respective requirements specification. However, according to the SysML
syntax, a multiplicity indication at the SUS side would represent a statement for the actor.

Some examples for the representation of multiplicities and their meaning:
1 or blank exactly one
0..1 none or one
* none or several
1..* one or several
2..4 at least two and at most four

Figure 2134 therefore includes for example the following related definitions:
⦁ the "Subsystem Point" must be able to interact with exactly one "Subsystem Electronic Interlocking" as an actor, with the interaction possible in two directions.
⦁ the "Subsystem Point" must be able to interact with one or more actors "Point machine", with the interaction possible in two directions.
⦁ the "Subsystem Point" must be able to interact with exactly one "Basic Data Identifier" as an actor, with an interaction only possible from "Basic Data Identifier" to the "Subsystem Point".

Roles at the association ends represent the used “Interface kind” such as SCI-LS, SMI-LS and so on. In Figure 2134 "Subsystem Point" sees for example "Subsystem Electronic Interlocking" in the role of "SCI-P" and vice versa.

Figure 2134 therefore includes for example the following related definitions:
⦁ the interface between "Subsystem Point" and "Subsystem Electronic Interlocking" must be implemented according to the specification of "SCI-P".
⦁ the interface between "Subsystem Point" and "Subsystem Maintenance and Data Management" must be implemented according to the specification of "SMI-P".
⦁ the interface between "Subsystem Point" and "Subsystem Maintenance and Data Management" must be implemented according to the specification of "SDI-P".
⦁ the interface between "Subsystem Point" and "Subsystem Security Services Platform" must be implemented according to the specification of "SSI-P".

Figure 2134 Example of SUS model view "Logical Context"

Modelling Standard

© EULYNX Partners Page 76 of 119

ID

Eu.ModSt.377

Eu.ModSt.378

Eu.ModSt.379

Eu.ModSt.3560

Eu.ModSt.383

Eu.ModSt.385

Eu.ModSt.890

Eu.ModSt.386

Eu.ModSt.1184

Eu.ModSt.1186

Eu.ModSt.1212

Eu.ModSt.1213

Eu.ModSt.1188

Eu.ModSt.1185

Eu.ModSt.1214

Eu.ModSt.1215

Eu.ModSt.1187

Eu.ModSt.1252

Eu.ModSt.1189

Eu.ModSt.391

Eu.ModSt.740

Eu.ModSt.741

Eu.ModSt.392

Eu.ModSt.394

Eu.ModSt.395

Eu.ModSt.396

Requirement

8.3.6 Model view ''Logical Context'' of a SUS (AL1) - Modelling rules

8.3.6.1 SysML diagram

Block definition diagram (BDD): depicts the view "Logical System Context".

Name of the Diagram:
bdd[Package]<><System block signature><>-<>Logical Context<>[Logical Viewpoint<>-<>Subsystem Definition].

Example:
bdd [Package] Subsystem Light Signal - Logical Context [Logical Viewpoint - Subsystem Definition]

8.3.6.2 Model elements

The model elements basically used to describe the model view "Logical Context" are depicted in Figure 2134.

Block: Modular unit of structure in SysML that is used to define the Logical Structural Entity (LSE) or Environmental Structural Entity (ESE) representing the logical view of the SUS or the actors at the uppermost level of
abstraction.

Naming conventions for blocks representing LSEs:
<System block signature> := <Abbr. System ID> | <System ID>

<Abbr. System ID> := <Abbr. System type><><Abbr. System name>

<Abbr. System type> := "Sys" | "SubS" | "SysElem"

<Abbr. System name> := freely selectable

Examples:
Sys ABB
SubS LS
SysElem 1

<System ID> := <System type><><System name>

<System type> := "System" | "Subsystem" | "System Element"

<System name> := freely selectable

Example:
System ABB
Subsystem Light Signal
System Element 1

If there are project-specific commitments, a deviating designation of <System block signature> may be used.

The modeller must ensure that the descriptions of the functional (Functional Viewpoint) and logical (Logical Viewpoint) representations of actors and SUS match.

Actor: At the Functional Viewpoint (model view "Functional Context"), an actor may be a class of users, roles users can play, or other systems. Cockburn [22] distinguishes between primary and secondary actors.

A primary actor is one having a goal requiring the assistance of the system.

A secondary actor is one from which the system needs assistance.

Depiction of an actor:
At the logical viewpoint, however, the actors defined in the model view "Functional Context" are represented as parts of the logical overall system architecture. They are represented by logical structural entities if they are in the
context of a system element belonging to the same overall system. If an actor in the context of a SUS is outside of the overall system of this SUS (adjacent system) it is represented by an environmental structural entity.

Association: specifies the structural relationship between a block, i.e. the SUS and an actor. It represents a logical interface (see also chapter 8.3.5)

Depending on the direction of the information flow, the association has to be stated bi-directional or uni-directional.

At the actor's side of an association, the multiplicity that defines the required quantity of each actor and the name of the logical interface has to be stated.

Modelling Standard

© EULYNX Partners Page 77 of 119

ID

Eu.ModSt.397

Eu.ModSt.1191

Eu.ModSt.1192

Eu.ModSt.1193

Eu.ModSt.1194

Eu.ModSt.1286

Eu.ModSt.1287

Eu.ModSt.1896

Eu.ModSt.7746

Eu.ModSt.7752

Eu.ModSt.7718

Eu.ModSt.7721

Eu.ModSt.7849

Eu.ModSt.7850

Eu.ModSt.7851

Requirement

At the block's side of an association, the multiplicity "1" and the name of the logical interface has to be stated.

Naming conventions for interfaces:
<Interface kind> := <Abbr. Type of interface>-<Interface ID>

<Abbr. Type of interface> := S*)CI | S*)Freely selectable | Freely selectable
S*)CI: Communication interface
S*)Freely selectable: Standardised Interface except SCI
Freely selectable: any non-standardised interface
*) "S" indicates that the interface is standardised

<Interface ID> := Freely selectable designator (as far as a generic interface is concerned, “Gen” or "XX"is to be used as Interface ID)

Examples:
SCI-P, SMI-LS, SDI-LS, SCI-Gen, SCI-XX

If the interface kind is used within the executable part of the model, where hyphens <-> are forbidden, an underscore <_> is to be used between <Abbr. Type of interface> and <Interface ID>.

Examples:
SCI_P, SMI_LS, SDI_LS, SCI_Gen, SCI_XX

If there are project-specific commitments, a deviating designation of <Interface kind> may be used.

8.3.6.3 Binding (see chapter 8.2.1)

Diagram of model view "Logical Context" has a ''Def'' binding.

8.3.7 Model view "Functional Partitioning" of a SUS (AL2) - Description

The model view "Functional Partitioning" shown in Figure 7723 describes the refinement of the SUS (1) by FEs.

The FEs (2) defined in the SIUS model view "Functional Partitioning" (see chapter 8.4.3), which represent the local behaviours of the PDI (see chapter 8.2.4), and the generic FEs (3) are referenced by the SUS through
reference associations (5). FEs which are assigned to the subsystem via reference associations (marked with a white diamond) are not part of the subsystem, but are only used there. They represent the local behaviour of the
PDI of the corresponding SIUS and are part of it.

The SUS-specific FEs (4) are part of the SUS which is represented by composite associations (6). FEs which are assigned to the subsystem via composite associations, i.e. so-called whole-part relationships (marked with a black
diamond) are part of the subsystem. They represent the specific behaviour of the subsystem that influences more than one interface. This so-called "linking behaviour" is also used to link the behaviour assigned to the interfaces.

The model view "Functional Partitioning" forms the basis for the model view "Functional Architecture" (see chapter 8.3.9). It defines the FEs in their maximum quantity structure in the form of multiplicities. Within the framework
of this quantity structure, the FE configurations required for the definition of the functional requirements are then created in the model view "Functional Architecture".

Modelling Standard

© EULYNX Partners Page 78 of 119

ID

Eu.ModSt.7723

Eu.ModSt.7719

Eu.ModSt.7780

Eu.ModSt.7781

Eu.ModSt.7782

Requirement

Figure 7723 Example of SUS model view "Functional Partitioning"

8.3.8 Model view "Functional Partitioning" of a SUS (AL2) - Modelling rules

8.3.8.1 SysML diagram

Block Definition Diagram (bdd): depicts the model view "Functional Partitioning".

Diagram heading:
bdd[Package]<><System block signature> <>->Functional Partitioning<> [Functional Viewpoint - Subsystem Requirements]

Modelling Standard

© EULYNX Partners Page 79 of 119

ID

Eu.ModSt.7783

Eu.ModSt.7811

Eu.ModSt.7812

Eu.ModSt.7843

Eu.ModSt.7852

Eu.ModSt.7028

Eu.ModSt.7029

Eu.ModSt.7755

Eu.ModSt.7756

Requirement

Example:
bdd [Package] Subsystem Point- Functional Partitioning [Functional Viewpoint - Subsystem Requirements]

8.3.8.2 Model Elements

Remains free for the time being.

8.3.8.3 Binding (see chapter 8.2.1)

Diagram of model view "Functional Partitioning" has a ''Def'' binding.

8.3.9 Model view "Functional Architecture" of a SUS (AL2) - Description

Figure 7755 shows the model view "Functional Architecture" (FA) of Subsystem Point. It is created based on the in model view "Functional Partitioning" defined FEs.

Figure 7755 Model view "Functional Architecture" of Subsystem Point

The model view "Functional Architecture" is explained in the following with a simple example as shown exemplarily in Figure 7031. It describes the external visible stimulus-response behaviour of a SUS (1) represented by a
Logical Structural Entity (LSE) that is structured in a way that enables an interface centric specification approach as described in chapter 8.2.4. The behaviour of the SUS is divided into Functional Entities" (FE), which
communicate with each other via internal interfaces and with the environment via external interfaces.

Modelling Standard

© EULYNX Partners Page 80 of 119

ID

Eu.ModSt.7033

Eu.ModSt.7759

Eu.ModSt.7037

Eu.ModSt.7038

Eu.ModSt.7039

Eu.ModSt.7040

Eu.ModSt.7036

Eu.ModSt.7885

Eu.ModSt.7041

Eu.ModSt.7043

Eu.ModSt.7044

Eu.ModSt.7860

Eu.ModSt.7045

Eu.ModSt.7861

Eu.ModSt.7884

Eu.ModSt.7046

Eu.ModSt.7049

Eu.ModSt.7762

Eu.ModSt.7050

Eu.ModSt.7030

Requirement

Functional Entities
To describe the overall behaviour of an SUS observable externally in an FA structured, two different representations of the FEs (4, 5) are used: FEs with a solid border (5) and FEs with a dashed border (4). Following the
interface centric specification paradigm explained in chapter 8.2.4, a solid-bordered FE represents the directly specified behaviour of the SUS that is the "linking behaviour" (e.g. S_P : S_P). It is an inseparable part of the SUS
behavioural model. FEs with dashed borders, on the other hand, are references (reference properties) to the interface protocols specified in the models of the application levels. These local behaviours are linked to the overall
behaviour of the SUS by the directly specified SUS linking behaviour. The model view "Functional Entity" is described in chapter 8.5 and chapter 8.6.

In Figure 7031, for example, the functional entity ":S_SCI_P_Command_and_Receive" is shown as a dashed block. This means that it is the local behaviour of the SCI-P protocol at application level, which is defined in the SCI-P
specification (see chapter 8.4).

Internal FE-coupling
Internal FE-couplings are implemented in two variants. In variant 1 (6), communication between two FEs takes place by means of signals and in variant 2 (7), permanent information is transmitted.

Variant 1 (6): an internal FE-coupling according to variant 1 defines an event-driven flow. It consists of two SysML proxy ports with the same name that are connected via a connector (SysML Connector). The connector
represents the communication channel over which the information objects defined in the port type (SysML interface block) such as "w_p" can be exchanged. The information objects are represented by SysML signals (see
chapter 8.7.4 and chapter 8.6.6.10.1). The port type is used conjugated on one side (e.g., ~w_p). This means that an information object defined as outgoing in the interface block (port type) becomes an incoming information
object through conjugation.

Port name and port type are written in lower case. In addition, the ports are shown in the colour of the FEs.

Variant 2 (7): an internal FE-coupling according to variant 2 defines a continuous flow. It consists of two SysML proxy ports or alternatively SysML flow ports with the same name that are connected via a connector (SysML
Connector). The continuity of the information transmission is indicated by the abbreviation "d = data" at the beginning of the names of the ports involved.

The information flows defined in the internal FE-couplings or the couplings themselves are to be interpreted as descriptive elements of the behaviour and are only binding in the context of the overall behaviour. That
means that an information flow defined in an internal FE-coupling only becomes a mandatory requirement in the context of its active use, e.g. in a transition.

Please note: In some cases, flow ports are still used to describe internal FE-couplings (see for example Figure 7755). However, these will gradually be replaced by proxy ports in the future.

Ports used for internal FE-coupling are defined as functional ports. Their names are written in lower case. In addition, the ports are shown in the colour of the FEs.

External FE-coupling
The overall behaviour to be implemented by the manufacturers is connected to the logical SUS interfaces (2) via external FE-couplings (3).

An external FE-coupling consists of a proxy port representing a logical SUS interface, located at the SUS outer boundary and labelled with the designator of the interface concerned (e.g. SCI_P : SCI_P_Subsystem_EIL). The
proxy ports delegated from the FEs relevant to the interface using binding connectors (3) and representing the information flows (e.g. P11in : ~SCI_P_2 or P10inout : SCI_P_1) are embedded in it (9).

In other words, the port (e.g. P10inout : ~SCI_P_1) at the FE is duplicated on the SUS outer boundary. Both ports are connected with a binding connector. The information flows and their direction remain unchanged in the
interface block of the duplicated port.

The names of the proxy ports used in an external coupling (e.g. P11in or P10inout) designate the information flows assigned to the logical SUS interface. The port types (e.g. SCI_P_2 or SCI_P_1) define the information objects
of the information flows that must be able to be exchanged via the respective interface.

The information objects defined in the information flows or the couplings themselves are to be interpreted as descriptive elements of the behaviour and are only binding in the context of the overall behaviour. That means that
an information object defined in an external FE-coupling only becomes a mandatory requirement in the context of its active use, e.g. in a transition.

Please note: In some cases, flow ports are still used to describe external FE-couplings (see for example interface P3 in Figure 7755). However, these will gradually be replaced by proxy ports in the future.

Ports used for external FE-coupling are defined as logical ports. Port name and port type are written in capital letters. In addition, the ports are shown in the colour blue.

Open ports
Open ports (8) that is ports not associated to connectors define interfaces to specification parts not contained in the model, i.e. expected behaviour in the environment of the FEs. This behaviour can be implemented
proprietarily by each manufacturer, as long as the information expected at the ports is provided or the information delivered via the ports is processed accordingly.

Ports used as open ports are defined as logical ports. Port name and port type are written in capital letters. In addition, the ports are shown in the colour blue.

Open ports are also used to configure the specified behaviour.

Please note: The FA is not to be understood as a specification for an internal architecture of the SUS, but as a descriptive structuring. The FEs in communication relationship represent the expected overall behaviour of a SUS,
which must be fulfilled by the respective manufacturer in its entirety.

Modelling Standard

© EULYNX Partners Page 81 of 119

ID

Eu.ModSt.7031

Eu.ModSt.1800

Eu.ModSt.1813

Eu.ModSt.1832

Eu.ModSt.1833

Eu.ModSt.1834

Eu.ModSt.7758

Eu.ModSt.7763

Eu.ModSt.7764

Eu.ModSt.7857

Eu.ModSt.1137

Eu.ModSt.694

Eu.ModSt.7858

Requirement

Figure 7031 Example of SUS model view "Functional Architecture"

8.3.10 Model view "Functional Architecture" of a SUS (AL2) - Modelling rules

8.3.10.1 SysML diagram

Internal Block Diagram (ibd): depicts the model view "Functional Architecture".

Diagram heading:
ibd[Block]<><System block signature><>[Functional Viewpoint<>-<>System Requirements<>-<>Functional Architecture]

Example:
ibd[Block] Subsystem Electronic Interlocking[Functional Viewpoint-System Requirements-Functional Architecture]

8.3.10.2 Model elements

Block: Modular unit of structure in SysML that is used to define the Logical Structural Entity (LSE) representing the SUS at the Logical Viewpoint and the Functional Entities (FE) in the form of parts and reference properties.

Part: Parts (5) describe composition relationships between blocks. A composition relationship is also called a whole-part relationship. Thus, the parts used in a Functional Architecture of a SUS describe the composition
relationships between the LSE and the corresponding FEs representing linking behaviour as introduced in chapter 8.2.4.

Reference properties: Reference properties (4) enable an instance of a block that contains the reference property to refer to an instance of the block which types the reference property. They can be used to describe a logical
hierarchy that references blocks that are part of other composition hierarchies. Reference properties are depicted in a similar fashion to parts when shown on the internal block diagram, except that their box symbol has a
dashed instead of a solid boundary. In the model view "Functional Architecture" of a SUS reference properties represent FEs which are references to the local behavioural parts of the interface application protocol as defined in
model view "Functional Architecture" of the SIUS (see chapter 8.4.5).

Part/reference property signature := <Name of the part/reference property>:<FE_TFE block signature>

Name of the part/reference property := 1) | 2) | 3)
1) A part/reference property is not named when the type (FE_TFE block signature) provides sufficient information to infer the role the part plays in the context of the Functional Architecture.
2) A part/reference property is given a name (Freely selectable designator) when the type (FE_TFE block signature) does not adequately describe the role the part plays in the context of the Functional Architecture.
3) A part/reference property is given a name (Freely selectable designator) when it is used within a SySim simulation.

Example:
S_P : S_P
:S_SCI_P_Command_and_Receive

Modelling Standard

© EULYNX Partners Page 82 of 119

ID

Eu.ModSt.7765

Eu.ModSt.7766

Eu.ModSt.7859

Eu.ModSt.7862

Eu.ModSt.7863

Eu.ModSt.7865

Eu.ModSt.7867

Eu.ModSt.7864

Eu.ModSt.7868

Eu.ModSt.7869

Eu.ModSt.7870

Eu.ModSt.7871

Eu.ModSt.7872

Eu.ModSt.7948

Eu.ModSt.7760

Eu.ModSt.7761

Eu.ModSt.7197

Eu.ModSt.7945

Eu.ModSt.7946

Eu.ModSt.7947

Eu.ModSt.7186

Eu.ModSt.7193

Requirement

Connector: SysML connectors (6,7) are used to model the connections between parts or reference properties. Thus, they specify the communication-channels between the ports of FEs.

Whereas an out port of a FE may be connected to no connector or an infinite number of connectors, an in port may be connected to either no connector or only one connector, but must not be connected to more than one
connector.

Binding Connector: A binding connector (3) is a special kind of connector that constrains its ends to have the same value. It is used, among other things, to bind proxy ports to parts or reference properties. For example, the
value of the proxy port "P11in: ~SCI_P_2" (9) at the SUS interface (2) in Figure 7031 corresponds to that of the port of the same name of the FE ":S_SCI_P_Command_and_Receive". A binding connector is shown using the
connector notation, except that the connector path optionally has the keyword <<equal>> shown near its centre.

Designator of a logical SUS interface := <Interface kind><>:<><Signature of Interface block aggregating information flows>

<Signature of Interface block aggregating information flows> := <Interface kind>_<System block signature>

<Interface kind>: see chapter 8.3.6.2 (Example: SCI_P)

<System block signature>: see chapter 8.3.6.2 (Example: Subsystem_EIL)

Example of a designator of a logical SUS interface:
SCI_P : SCI_P_Subsystem_EIL

Designator of an Information flow := P<PNo><Port direction>_<Port information><>:<><Signature of Interface block aggregating information objects>

<PNo>, <Port direction>, <Port information> are defined in chapter 8.6.5.2.

<signature of Interface block aggregating information objects> := <Interface kind>_<IFNo>

Information flow number (IFNo): natural number

Example:
P11in : SCI_P_2
P10inout : SCI_P_1
P1inout : SCI_CC_1

Please note: Regarding the use of flow ports, flow specifications and flow properties see [Eu.Doc.30].

8.3.10.3 Binding (see chapter 8.2.1)

Diagram of model view "Functional Architecture" has a ''Def'' binding.

Ports have a ''Def'' binding.

Flow specifications have an "Info" binding.

FLow properties of the flow specifications have a "Def" binding if they are further refined elsewhere (e.g. by linked telegram definitions in separate interface specifications or further requirements in chapter 5.X. of the
subsystem requirements specification in the requirements management tool).

FLowProperties of the FlowSpecifications have a "Req" binding if they are not further refined elsewhere.

8.3.11 Model view "Technical Functional Architecture" of a SUS (AL2) - Description

Figure 7194 shows the engineering path of the model views used to specify a SUS at the Technical Viewpoint on abstraction level AL2.

Modelling Standard

© EULYNX Partners Page 83 of 119

ID

Eu.ModSt.7194

Eu.ModSt.7767

Eu.ModSt.7769

Eu.ModSt.7192

Eu.ModSt.7189

Eu.ModSt.7886

Eu.ModSt.7887

Eu.ModSt.7888

Eu.ModSt.7889

Eu.ModSt.7890

Eu.ModSt.7891

Eu.ModSt.7892

Eu.ModSt.7893

Requirement

Figure 7194 Engineering path to specify a SUS at the Technical Viewpoint on abstraction level AL2

The model view "Technical Functional Architecture" (TFA) supplements or substitutes the behaviour described in the model view "Functional Architecture", which is independent of technology, with behavioural components
derived from technical requirements. In other words, the FEs interconnected in the model view "Functional Architecture" are either transferred to the model view "Technical Functional Architecture" or completely or partially
replaced by Technical Functional Entities (TFE).

The SUS can either be described completely from a technical point of view (all FEs are replaced by TFEs) or only certain parts of it (interconnection of TFEs and transferred FEs).

Figure 7188 shows an example of the transfer of the FES defined in the model view "Functional Architecture" to the model view "Technical Functional Architecture" of the SUS Subsystem Point. The SUS (1) is represented by a
Technical Structural Entity (TSE). The transferred FEs (5) are supplemented with the TFE "F_Control_And_Observe_4W_PM" (3) that describes the functionality of the four-wire interface to a point machine based on technical
requirements.

In model view "Technical Functional Architecture" TFEs are coupled with each other, with the already defined FEs (6) and with the environment (4) via external technical functional interfaces (2).

The overall behaviour of a SUS structured by a TFA can be divided into several TFAs in the graphical representation.

Technical Functional Entities
To describe the overall behaviour of an SUS observable externally in an TFA structured, two different representations of the TFEs are used: TFEs with a solid border (3) and TFEs with a dashed border. Following the interface
centric specification paradigm explained in chapter 8.2.4, a solid-bordered FE represents the directly specified behaviour of the SUS that is the "linking behaviour". It is an inseparable part of the SUS behavioural model. TFEs
with dashed borders, on the other hand, are references (reference properties) to the interface protocols specified in the models of the application levels. These local behaviours are linked to the overall behaviour of the SUS by
the directly specified SUS linking behaviour. The model view "Technical Functional Entity" is described in chapter 8.5 and chapter 8.6.

Internal TFE-coupling and external TFE-coupling
The definitions for internal FE-coupling and external FE-coupling in chapter 8.3.9 apply accordingly.

Ports used for external TFE-coupling and internal TFE-coupling are defined as technical functional ports. They are shown in the colour yellow (4).

Ports used for internal coupling of FEs with TFEs are functional ports. They are shown in the colour green (6).

Ports representing technical functional SUS interfaces (2) can only be connected to technical functional ports (4).

Open ports
Open ports that is ports not associated to connectors define interfaces to specification parts not contained in the model, i.e. expected behaviour in the environment of the TFEs. This behaviour can be implemented proprietarily
by each manufacturer, as long as the information expected at the ports is provided or the information delivered via the ports is processed accordingly.

Ports used as open ports are defined as logical ports. Port name and port type are written in capital letters. In addition, the ports are shown in the colour blue.

Modelling Standard

© EULYNX Partners Page 84 of 119

ID

Eu.ModSt.7883

Eu.ModSt.7188

Eu.ModSt.7301

Eu.ModSt.7303

Eu.ModSt.7304

Eu.ModSt.7305

Eu.ModSt.7306

Eu.ModSt.7307

Eu.ModSt.7308

Eu.ModSt.7310

Requirement

Please note: The TFA is not to be understood as a specification for an internal architecture of the SUS, but as a descriptive structuring. The TFEs or FEs in communication relationship represent the expected overall behaviour of
a SUS, which must be fulfilled by the respective manufacturer in its entirety.

Figure 7188 Example of SUS model view "Technical Functional Architecture"

8.3.12 Model view "Technical Functional Architecture" of a SUS (AL2) - Modelling rules

8.3.12.1 SysML diagram

Internal Block Diagram (ibd): depicts the model view "Technical Functional Architecture"

Diagram heading:
ibd[Block]<><System block signature><>[Technical Viewpoint<>-<>Subsystem Requirements<>-<>Technical Functional Architecture]

Example:
ibd [block] Subsystem Point 4 Wire PM I/F [Technical Viewpoint - Subsystem Requirements - Technical Functional Architecture]

8.3.12.2 Model elements

Block: Modular unit of structure in SysML that is used to define the TSE representing the technical manifestation of the SUS.

Please note: For the remaining model elements, the definitions in chapter 8.3.10.2 apply accordingly.

Modelling Standard

© EULYNX Partners Page 85 of 119

ID

Eu.ModSt.7330

Eu.ModSt.7333

Eu.ModSt.7335

Eu.ModSt.7336

Eu.ModSt.2486

Eu.ModSt.2238

Eu.ModSt.2239

Eu.ModSt.2240

Eu.ModSt.2241

Eu.ModSt.2242

Eu.ModSt.2243

Requirement

8.3.12.3 Bindings (see chapter 8.2.1)

Diagram of model view "Technical Functional Architecture" has a ''Def'' binding.

Ports have a ''Def'' binding.

Technical functional SUS interface has a ''Req'' binding if it is not further specified in a refined model view or in the form of a separate requirement.

8.4 Model views used to specify EULYNX interfaces

Model view "Logical Context": Block Definition Diagram (bdd)

The model view "Logical Context" describes the logical view of an interface at the upper level of abstraction.

Model view "Functional Partitioning": Block Definition Diagram (bdd)

The model view "Functional Partitioning" describes the refinement of the interface defined in model view "Logical Context" using Functional Entities.

Model view "Functional Architecture": Internal Block Diagram (ibd)

The model view "Functional Architecture" defines the global behaviour of the application protocol (see chapter 8.2.4).

Model view "Functional Entity": Internal Block Diagram (ibd) and State Machine (stm)

The model view "Functional Entity" encapsulates a subset of the functional requirements of an SUS in the form of a function module. It delimits the function module from its environment and defines the inputs and outputs.
In the discrete case, the behaviour of the function block is described by means of state machines. In this, the binding functional requirements are specified in the form of states and corresponding state transitions. As the model
view "Functional Entity" is used for the specification of EULYNX system elements as well as for the specification of EULYNX interfaces it is described in the separate chapter 8.5 and chapter 8.6.

Model view "Information Flow": Block Definition Diagram (bdd)

The model view „Information Flow" describes the information objects to be exchanged via an interface which are further refined to telegrams at abstraction level AL3. At present, the telegrams are not yet described in a model-
based way. They are defined in the interface specifications (e.g. Interface Specification SCI-P, [Eu.Doc.38]).

Figure 2244 shows the engineering path of the model views used to specify a SIUS considering the Functional Viewpoint and the Logical Viewpoint. It describes the context of the model views, with the arrows indicating which
model views are developed from which. Based on the definition of the logical SUS interfaces in model view "Logical Context" of the SUS (a: see Figure 2129 in chapter 8.3) the model views "Logical Context" and "Functional
Partitioning" of the corresponding SIUS are created. The model view "Functional Partitioning" in turn forms the basis for the creation of the model view "Functional Architecture" of the SIUS and the model view "Functional
Partitioning" of the SUS (b: see Figure 2129 in chapter 8.3). Subsequently, the model views "Information Flow" and "Functional Entity" are created.

Modelling Standard

© EULYNX Partners Page 86 of 119

ID

Eu.ModSt.2244

Eu.ModSt.7229

Eu.ModSt.7230

Eu.ModSt.7233

Eu.ModSt.7235

Eu.ModSt.7237

Eu.ModSt.7239

Eu.ModSt.7240

Eu.ModSt.7241

Requirement

Figure 2244 Engineering path to specify a EULYNX interface

8.4.1 Model view "Logical Context" of a SIUS (AL1) - Description

The model view "Logical Context" as shown in Figure 7231 describes the logical view of an interface at the upper level of abstraction. In contrast to the logical context of a SUS in which the logical interfaces are also defined in
terms of their number, an interface in its logical context is regarded as a one-to-one relationship.

An interface (1) is generally defined as a unique connection between two communication participants (5). From the logical viewpoint at the upper level of abstraction an interface is represented by a SysML association (1). An
association is depicted as a continuous line between the communication participants. It also represents the possible interaction directions of the interface. No arrow heads means that the interaction is bidirectional. An arrow
head on the other hand indicates that an interaction is only possible in the direction of the arrow. It represents the requirement that the two communication participants must be able to interact with each other.

The logical interface represented by an association (1) is linked to a SysML association block (3), which serves to refine the relationship. The global behaviour of the application protocol (Railway Control Protocol: RCP) is then
specified in this later in the model view "Functional Architecture".

A defined set of information objects (information flow) is transmitted via the interface in a precisely defined temporal sequence (protocol) in many cases.
An information flow and the corresponding definition of the temporal sequence can apply to different interfaces. These two properties of an interface are called interface kind (4).
The interface kind is mapped at the association ends in the form of roles (4). This separation of interface and interface kind makes it possible to communicate in the same way via several different
"unique relationships = interfaces".
The interface kind represents the requirement that it is to be applied to a specific interface.

An interface is identified by a unique name (2) placed above or below the association (1) representing the interface.

The black arrow shown in connection with the association indicates the reading direction. The directional arrow specifies the top-level navigation through the interface model to improve readability. It is taken into account when
refining the model, for example when defining the conjugation of information flows. Beyond that, it has no meaning for the model.

The interface name can be identical to the interface kind if it is certain that the interface kind is only applied to a specific interface and not to several different ones.
If the interface name is the same as the interface kind, it may not be displayed.

Modelling Standard

© EULYNX Partners Page 87 of 119

ID

Eu.ModSt.7231

Eu.ModSt.1730

Eu.ModSt.1732

Eu.ModSt.1733

Eu.ModSt.1734

Eu.ModSt.1735

Eu.ModSt.7238

Eu.ModSt.7784

Eu.ModSt.1364

Eu.ModSt.7786

Eu.ModSt.7787

Eu.ModSt.2260

Eu.ModSt.2261

Eu.ModSt.2264

Eu.ModSt.7904

Requirement

Figure 7231 Example of SIUS model view "Logical context"

8.4.2 Model view ''Logical Context'' of a SIUS (AL1) - Modelling rules

8.4.2.1 SysML diagram

Block definition diagram (bdd): depicts the view Technical Connection Domain Context.

Diagram heading:
bdd[Package]<><Interface name><>-<>Logical Context<>[Logical Viewpoint<>-<>Interface Definition].

Example:
bdd SCI-P - Logical Context [Logical Viewpoint - Interface Definition]

8.4.2.2 Model elements

Block: Modular unit of structure in SysML that is used to define the LSE representing the communication participants that is, the communicating subsystems (5).

Association block (3): an association block is a combination of an association and a block, so it can relate two blocks together but can also have internal structure and other features. The internal structure can be used to
decompose the connector that is typed by the association block. Association blocks are shown on block definition diagrams as an association path with a block symbol attached to it via a dashed line.

8.4.2.3 Bindings (see chapter 8.2.1)

Diagram of model view "Logical Context" has a ''Def'' binding.

8.4.3 Model view "Functional Partitioning" of a SIUS (AL2) - Description

The model view "Functional Partitioning" as shown in Figure 2262 describes the refinement of the interface defined in model view "Logical Context" using Functional Entities. These Functional Entities specify the local behaviours
of the communication protocol stack scaled-down to the application layer (PDI: Process Data Interface Protocol) at each side of the communicating system elements.

The specific (2) and generic (1) local behavioural parts of the application protocol defined by FEs are referenced by the communication partners via SysML reference associations (4). Reference associations are marked with a
white diamond and express that the FEs are not part of the subsystems, but are only used there. They are part of the PDI.

The FEs are used in the model view "Functional Architecture" to specify the global behaviour of the application protocol represented by the internal structure of the association block (3) associated with the association
representing the interface.

Modelling Standard

© EULYNX Partners Page 88 of 119

ID

Eu.ModSt.2262

Eu.ModSt.1359

Eu.ModSt.1361

Eu.ModSt.1362

Eu.ModSt.1405

Eu.ModSt.1406

Eu.ModSt.1363

Eu.ModSt.1407

Eu.ModSt.7796

Eu.ModSt.7797

Eu.ModSt.2265

Eu.ModSt.2266

Eu.ModSt.2269

Requirement

Figure 2262 Example of SIUS model view "Functional Partitioning"

8.4.4 Model view "Functional Partitioning" of a SIUS (AL2) - Modelling rules

8.4.4.1 SysML diagram

Block Definition Diagram (bdd): depicts the model view "Functional Partitioning".

Diagram heading:
bdd[Package]<><Interface name><>-<>Functional Partitioning<>[Functional Viewpoint<>-<>Interface Requirements]

Example:
bdd SCI-P - Functional Partitioning [Functional Viewpoint - Interface Requirements]

8.4.4.2 Model elements

Remains free for the time being.

8.4.4.3 Bindings (see chapter 8.2.1)

Diagram of model view "Functional Partitioning" has a ''Def'' binding.

8.4.5 Model view "Functional Architecture" of a SIUS (AL2) - Description

The model view "Functional Architecture" as shown in Figure 2267 defines the global behaviour of the application protocol. The global behaviour is described by connecting the local behavioural components referenced by a
communication partner with the corresponding ones of the neighbour via communication channels.

The description of the global behaviour of the application protocol is done by the internal structuring of the association block (1) defined in the model view "Functional Partitioning". In this process, the communication partners
(2), which in turn reference the local behavioural parts of the protocol represented by FEs (3), are referenced in the form of SysML participant properties and connected via their logical SUS interfaces (4) with connectors (5).

Modelling Standard

© EULYNX Partners Page 89 of 119

ID

Eu.ModSt.2267

Eu.ModSt.7203

Eu.ModSt.1370

Eu.ModSt.1371

Eu.ModSt.1410

Eu.ModSt.1411

Eu.ModSt.1372

Eu.ModSt.1963

Eu.ModSt.7802

Eu.ModSt.7803

Eu.ModSt.7909

Eu.ModSt.2270

Eu.ModSt.2271

Eu.ModSt.7807

Requirement

Figure 2267 Example of SIUS model view "Functional Architecture"

8.4.6 Model view "Functional Architecture" of a SIUS (AL2) - Modelling rules

8.4.6.1 SysML diagram

Internal Block Diagram (ibd): depicts model view "Functional Architecture".

Diagram heading:
ibd[Block]<><Interface name><>[Functional Viewpoint<>-<>Interface Requirements<>-<>Functional Architecture]

Example:
ibd[Block] SCI-P [Functional Viewpoint - Interface Requirements - Functional Architecture]

8.4.6.2 Model elements

Participant property: Participant properties are placeholders that represent the blocks at the end of an association block, and are used when it is desired to decompose a connector. A participant property is depicted as a
dashed box, like a reference property, but distinguished from other properties by the keyword <<participant>>.

8.4.6.3 Bindings (see chapter 8.2.1)

Diagram of model view "Functional Architecture" has a ''Def'' binding.

Ports have a ''Def'' binding.

8.4.7 Model view "Information Flow" of a SIUS (AL2) - Description

The model view "Information Flow" describes the information objects to be exchanged via an interface. It consists of the two sub-model views "Direction of Information Objects" and "Information Objects", which are shown in
Figure 7774 and Figure 2272 respectively.

As shown in Figure 7774, the SUS interfaces such as SCI_P are depicted by proxy ports. These are typified with interface blocks such as SCI_P_Subsystem_P (1), which represent information flows in the form of embedded
proxy ports such as P10inout. The embedded proxy ports are typed with interface blocks (2), which in turn contain the information objects (e.g. Cd_Move_Point).

Modelling Standard

© EULYNX Partners Page 90 of 119

ID

Eu.ModSt.7774

Eu.ModSt.1376

Requirement

Figure 7774 Example of SIUS model view "Information flow" - Direction of Information Objects

As shown in Figure 2272, the information objects are represented by SysML signals such as "Cd_Move_Point" (3). These signals can in turn have attributes such as "CommandedPointPositionState" (4) that represent
parameters of the information objects. The attributes are typed with basic data types or for example enumerations such as "PointPositionControlableState" (5).

Modelling Standard

© EULYNX Partners Page 91 of 119

ID

Eu.ModSt.2272

Eu.ModSt.7842

Eu.ModSt.7206

Eu.ModSt.1379

Eu.ModSt.1380

Eu.ModSt.1414

Eu.ModSt.1378

Eu.ModSt.1417

Eu.ModSt.1381

Eu.ModSt.1416

Eu.ModSt.7099

Eu.ModSt.7106

Eu.ModSt.7100

Requirement

Figure 2272 Example of SIUS model view "Information flow" - Information Objects

Please note: These model views can also be used in an adapted form to define the information flows for internal couplings between FEs or TFEs in a Functional Architecture or Technical Functional Architecture.

8.4.8 Model view "Information Flow" of a SUS - Modelling Rules

8.4.8.1 SysML diagram

Block Definition Diagram (bdd): depicts the sub-model views "Direction of Information Objects" and "Information Objects" of model view "Information Flow".

Diagram heading (sub-model view "Direction of Information Objects"):
bdd[Package]<><Interface name><>-<><Information Flows><>[Interface Requirements<>-<>Direction of Information Objects

Diagram heading (sub-model view "Information Objects"):
bdd[Package]<><Interface name><>-<><Information Flows><>[Interface Requirements<>-<>Information Objects

Example:
bdd[Package] SCI-P - Information Flows [Interface Requirements - Direction of Information Objects]
bdd[Package] SCI-P - Information Flows [Interface Requirements - Information Objects]

8.4.8.2 Model elements

Remains free for the time being.

8.4.8.3 Bindings (see chapter 8.2.1)

Diagram of model view "Information Flows - Direction of Information Objects" has a ''Def'' binding.

Diagram of model view "Information Flows - Information Objects" has a ''Def'' binding.

Modelling Standard

© EULYNX Partners Page 92 of 119

ID

Eu.ModSt.7107

Eu.ModSt.7905

Eu.ModSt.1249

Eu.ModSt.7487

Eu.ModSt.7488

Eu.ModSt.7489

Eu.ModSt.7490

Eu.ModSt.7491

Eu.ModSt.7492

Eu.ModSt.7493

Eu.ModSt.7494

Eu.ModSt.7495

Eu.ModSt.7808

Eu.ModSt.7829

Eu.ModSt.7809

Eu.ModSt.7815

Requirement

Information Objects (Signals) have a ''Def'' binding if they are further specified in a refined model view or in the form of a separate requirement.

Information Objects (Signals) have a ''Req" binding if they are not further specified in a refined model view or in the form of a separate requirement.

8.5 Model views "Functional Entity" and "Technical Functional Entity" - Description

Within the EULYNX approach to specify model-based requirements the concept of Functional Entity (FE) and Technical Functional Entity (TFE) is used.

FE and TFE represent behavioural entities and encapsulate a subset of the functional requirements of a SUS or SIUS in the form of stimulus-response behaviour independent of any architectural constraints. While FEs define
technology-independent functional requirements, TFEs describe technology-dependent ones.

Please note: FEs and TFEs are not to be interpreted as elements of the hardware- or software architecture.

The stimulus-response behaviour of FEs and TFEs is defined by SysML state machines (see chapter 8.6.6).

The principle structure of a Functional Entity and a Technical Functional Entity is shown in Figure 7492.

Figure 7492 Example of a Functional Entity and a Technical Functional Entity

Apart from state machines, FEs and TFEs may own
⦁ SysML block properties (3),
⦁ SysML block operations (2),
⦁ SysML proxy ports used as atomic "in ports" and "out ports" (5, 6) or typed with an interface block in which the information objects to be exchanged via the port are defined (4, 7),
⦁ SysML flow ports used as atomic "in ports" and "out ports" (8, 10).

The description of a FE (1) contains the stereotype <<functional entity>> as well as the FE name (e.g. S_W).

The description of a TFE (9) contains the stereotype <<technical functional entity>> as well as the TFE name (e.g. F_Control_And_Observe_4W_PM).

8.6 Model views "Functional Entity" and "Technical Functional Entity" - Modelling rules

The numbers (2) to (10) added in the following descriptions refer to Figure 7492.

8.6.1 SysML Diagram

Internal Block Diagram (ibd): depicts model views "Functional Entity" and "Technical Functional entity".

Modelling Standard

© EULYNX Partners Page 93 of 119

ID

Eu.ModSt.7816

Eu.ModSt.7817

Eu.ModSt.7818

Eu.ModSt.7819

Eu.ModSt.7820

Eu.ModSt.7821

Eu.ModSt.7822

Eu.ModSt.906

Eu.ModSt.911

Eu.ModSt.916

Eu.ModSt.966

Eu.ModSt.7810

Requirement

Diagram heading - FE:
ibd[Block]<><FE_TFE block signature><>[Functional Viewpoint<>-<>Subsystem Requirements<>-<>Functional Entity]

Diagram heading - TFE:
ibd[Block]<><FE_TFE block signature><>[Functional Viewpoint<>-<>Subsystem Requirements<>-<>Technical Functional Entity]

Example:
ibd[Block] S_Point [Functional Viewpoint - Subsystem Requirements - Functional Entity]
ibd[Block] F_Control_And_Observe_4W_PM [Functional Viewpoint - Subsystem Requirements - Technical Functional Entity]

8.6.2 Block

Block: Modular unit of structure in SysML that is used to define a FE or TFE

Block name: <FE_TFE block signature>

Example:
S_P
F_Control_And_Observe_4W_PM

<FE_TFE block signature> := <Layer of LA modelling pattern >_ <Name of functionality>_<Operational entity>

<Layer of LA modelling pattern> := C | S | F | ""
C: Command control layer,
S: Safety layer,
F: Field layer
"": if no layer is applicable
See chapter 8.2.2

<Name of functionality> := 1) | 2) | 3) | 4) | 5) | 6)
1) FE/TFE specifies the essential states of an operational entity (operating modes): EST
2) FE/TFE specifies the behaviour of an operational entity: <description of the functionality> (example: Control_And_Observe_4W_PM)
3) FE/TFE specifies local behaviour of the application protocol layer (RCP) assigned to a certain operational entity (see chapter 8.2.4):
 <Interface name> (example: SCI_P) or
 <Interface name>_<description of the functionality> (example: SCI_P_Report_Status)
4) FE/TFE specifies generic local behaviour of the application protocol layer (RCP):
 <Abbr. Type of interface>_Gen (example: SCI_Gen)
 <Abbr. Type of interface>_<description of the functionality>_Gen (example: SCI_Check_Version_Gen)
5) FE/TFE specifies generic local behaviour of the application protocol layer (RCP) assigned to a certain group of operational entities:
 <Abbr. Type of interface>_<Operational entity_Operational entity_..._Operational entity>_Gen (example: SCI_LS_P_Gen) or
 <Abbr. Type of interface>_<Operational entity_Operational entity_..._Operational entity>_<description of the functionality>_Gen (example: SCI_LS_P_Check_Version_Gen)
6) FE/TFE specifies generic local behaviour of the application protocol layer (RCP) assigned to a certain group of operational entities using a common designator:

<Abbr. Type of interface>_<group designator>_Gen (example: SCI_EfeS_Gen) or
<Abbr. Type of interface>_<group designator>_<role of communication partner> (SCI_EfeS_Prim)
<Abbr. Type of interface>_<group designator>_<description of the functionality>_Gen (example: SCI_EfeS_Check_Version_Gen)
<Abbr. Type of interface>_<group designator>_<role of communication partner>_<description of the functionality> (example: SCI_EfeS_Prim_Check_Version)
<group designator> := Freely selectable common designator (example: FE for field elements)
<role of communication partner> := freely selectable designator such as Prim (Primary) and Sec (Secondary)

<Operational entity> := 1) | 2) | 3) | 4) | 5)
1) FE/TFE specifies the behaviour or the essential states of an operational entity: Name of the operational entity (vertical slice of the LA modelling pattern)
 Examples: LS, P, SOR (start of route), EOR (end of route)
2) FE/TFE specifies generic behaviour or the essential states of an operational entity: Gen
3) FE/TFE specifies generic behaviour or the essential states assigned to a certain group of operational entities:
 <Operational entity_Operational entity_..._Operational entity>_Gen (example: LS_P_Gen)
4) FE/TFE specifies generic behaviour or the essential states assigned to a certain group of operational entities using a common designator:
 <group designator>_Gen (example: EfeS_Gen)
<group designator> := Freely selectable common designator (example: FE for field elements)
5) FE/TFE specifies the local behaviour of the application protocol layer (RCP): no operational entity

8.6.3 Model elements - Block properties

Modelling Standard

© EULYNX Partners Page 94 of 119

ID

Eu.ModSt.7497

Eu.ModSt.534

Eu.ModSt.533

Eu.ModSt.7498

Eu.ModSt.536

Eu.ModSt.539

Eu.ModSt.540

Eu.ModSt.897

Eu.ModSt.898

Eu.ModSt.537

Eu.ModSt.541

Eu.ModSt.542

Eu.ModSt.538

Eu.ModSt.7813

Eu.ModSt.7500

Eu.ModSt.7951

Eu.ModSt.1011

Eu.ModSt.545

Requirement

Block properties (3) are to be interpreted in the sense of variables or constants that store values. They are prefixed with "Mem".
Examples: Mem_last_Target_Requested, Mem_Current_Point_Position.

Block properties are to be typed using the defined SySim value types.

All SysML block properties have to be initialised. The initialisation must be carried out in an init-operation using ASAL. This SysML block operation is systematically named cOp1_init().

The initialisation can be carried out in the body of the init-block operation systematically named cOp1_init(). Alternatively it can be carried out directly in the transition effect of the transition outgoing from initial state of the state
machine.
Example:
Mem_S_W_Position := "";
Mem_SW_Last_Position := "";
The assignments of values to the corresponding block properties are to be interpreted as definitions. They become mandatory requirements (binding character "Req") when they are used in a mandatory requirement, such as a
transition of a state.

Some reasons to use SysML block properties are given below. This is expressed by means of corresponding naming conventions:

Defining configuration data: Con_data-name (e.g. Con_t_ini_max)

<blockpropertyname> ::= <Con><mark><propertyinformation>
<propertyinformation>::= <alphaNum><remaininginformation>
<remaininginformation> ::= „“<alphaNum><remaininginformation>
<Con>::= Con
<alphaNum> ::= A  B    Z  a  b    _  0  ...  9
<mark>::= _

Defining site data: Site_data-name

<blockpropertyname> ::= <Site><mark><propertyinformation>
<propertyinformation>::= <alphaNum><remaininginformation>
<remaininginformation> ::= „“|<alphaNum><remaininginformation>
<Site>::= Site
<alphaNum> ::= A | B | … | Z | a | b | … | _ | 0 | ... | 9
<mark>::= _

Caching a value (except the value of a port): Mem_value-identifier (e.g. Mem_signal_aspect_to_be_indicated)

Caching the value of a port: Mem_port-name (e.g. Mem_T6_Msg_defective)

<blockpropertyname> ::= <Mem><mark><port-name>
<Mem>::= Mem
<mark>::= _

<blockpropertyname> ::= <Mem><mark><propertyinformation>
<propertyinformation>::= <alphaNum><remaininginformation>
<remaininginformation> ::= „“<alphaNum><remaininginformation>
<Mem>::= Mem
<alphaNum> ::= A  B    Z  a  b    _  0  ...  9
<mark>::= _

8.6.4 Model elements - Block operations

Block operations (2) are used in order to specify
⦁ internal broadcast events or
⦁ algorithms of data transformations defined in the operation body (call behaviour, time advance behaviour).

The content of an operation defined in the operation body shall always be displayed in the requirements management tool in "Requirements Part 1" and the name of the operation must be noted above it as a comment. The
actual name of the operation, which comes from the model element, shall then be displayed in "Requirements Part 2".

8.6.4.1 Internal broadcast events

Internal broadcast events are supposed to submit broadcasts within the state machine of a FE/TFE.

Modelling Standard

© EULYNX Partners Page 95 of 119

ID

Eu.ModSt.550

Eu.ModSt.969

Eu.ModSt.548

Eu.ModSt.549

Eu.ModSt.7823

Eu.ModSt.7502

Eu.ModSt.7504

Eu.ModSt.7503

Eu.ModSt.7505

Eu.ModSt.7506

Eu.ModSt.1014

Eu.ModSt.1015

Eu.ModSt.553

Eu.ModSt.1017

Eu.ModSt.7814

Eu.ModSt.7507

Eu.ModSt.7508

Eu.ModSt.7509

Requirement

Naming of internal broadcast events
bc<Id>_<broadcast information>,
Example: bc1_indicate_signal_aspect.

Id: Natural number starting with 1

8.6.4.2 Definition of algorithms for data transformation

There are two types of behaviour that can be defined by means of SysML block operations:
⦁ call behaviour and
⦁ time advance behaviour.

8.6.4.2.1 Call behaviour

Block operations used to define call behaviour are prefixed with cOp<Id> where "Id" is a natural number starting with 1.

Call operations are used as

⦁ boolean expressions or parts of it in change events: e.g. when(cOp3_No_End_Position)/
⦁ transition guards: e.g. when(cOp5_Trailed)[cOp7_Is_Trailable]/
⦁ transition effects: e.g after(D5in_Con_tmax_Point_Operation/cOp12_Timeout();

Call behaviour is invoked on demand, executed and terminated after execution. It is supposed to define event-driven data transformations. The algorithm of the data transformations is described in the body of the corresponding
block operation using the Atego Structured Action Language (see chapter 8.6.7).

Example: cOp2_All_Left
if cOp8_Supports_Multiple_PMs() then
 return (
 (D21in_PM1_Position = "LEFT") and
 (D22in_PM2_Position = "LEFT" or D13in_PM2_Activation= "INACTIVE")

);
else
 return D21in_PM1_Position = "LEFT";
end if

The call operation to initialise the block properties and Out Ports of a FE is named cOp1_init() systematically.

Call operations are to be interpreted as definitions. They become mandatory requirements (binding character "Req") when they are used in a mandatory requirement, such as a transition of a state.

8.6.4.2.2 Time advance behaviour

Time advance behaviour is invoked once during system activation and executes continuously. It is supposed to define continuous data transformation. The algorithm of the data transformations is to be described in the body of
the corresponding block operation using the Atego Structured Action Language (see chapter 8.6.8).

Naming of time advance behaviour
tOp<Id>_<behaviour name>
Example: tOp1_indicate_availability_ratio

Id: Natural number starting with 1

8.6.5 Model elements - Ports

8.6.5.1 Atomic SysML in ports and out ports

A FE features interfaces that define the stimuli consumed by the assigned state machine, represented by atomic in ports, and responses generated by the assigned state machine, represented by atomic out ports.

In ports and out ports are specified as SysML proxy ports or SysML flow ports of the SysML block representing the FE/TFE depicted in an internal block diagram (ibd).

Modelling Standard

© EULYNX Partners Page 96 of 119

ID

Eu.ModSt.7510

Eu.ModSt.7511

Eu.ModSt.7512

Eu.ModSt.7513

Eu.ModSt.7514

Eu.ModSt.7515

Eu.ModSt.7516

Eu.ModSt.7517

Eu.ModSt.7518

Eu.ModSt.7519

Eu.ModSt.7520

Eu.ModSt.7521

Eu.ModSt.7522

Eu.ModSt.7523

Eu.ModSt.7524

Eu.ModSt.7525

Eu.ModSt.7526

Requirement

In ports and out ports are described according to the port definition schema below:

<Port information type><PNo><Port direction>_<Port information>:<Data type>.

Port information type
Used port information type:
⦁ D or d: data ports (D-Ports),
⦁ T or t: trigger ports (T-Ports).

Data ports and trigger ports start with a small letter (such as d3in_Point_Position or t4out_Timeout) if they are part of an internal connection between two FEs or between a FE and a TFE. In this case they are referred to as
functional ports and have the colour green like the corresponding F E (5).

Data ports and trigger ports start with a capital letter if they are part of an external connection between a FE and the system environment (system interface) or if it is an open port (such as D4in_ Normal_Mode or
T1in_SIL_not_fulfiled). In this case they are referred to as logical ports and have the colour blue (6).

Data ports and trigger ports which are part of a connection between TFEs or a TFE and the system environment (technical system interface) are referred to as technical functional ports and have the colour Yellow (10). They
start with a small letter if they are part of an internal connection between two TFEs and with a capital letter if they are part of an external connection between a TFE and the system environment (technical system interface).

Data ports (5), (6)
Data ports are especially suited to indicate permanently available information. The value of a D-port only changes if it is explicitly changed.

Data in ports are used as arguments of Boolean expressions in change events or transition guards. They may represent arguments in data transformations or other data, that need to be permanently reachable by the behaviour
of a FE (e.g configuration data: d21in_Con_Downgrade_Most_Restrict). Their values can be permanently regarded as valid.

Data out ports are used to provide continuous data created within a FE for its environment (e.g. to be available for adjacent FEs, reachable via their data in ports).

Trigger ports (8)
Trigger ports are especially suited to indicate singular events. They have a Boolean value that always enters false and only briefly changes to true when the event occurs (data types PulsedIn or PulsedOut). Afterwards the value
is automatically returned to false.

Trigger in ports are mainly used as arguments of Boolean expressions in change events.

Port number (PNo)
For each port of a FE/TFE with the port information type "D or d" or "T or t", a unique PNo is to be assigned in the format of a natural number. The ports need not be numbered consecutively.
For example port numbers like 1, 2, 3, 4, 5 are possible, but also 1, 3, 6.

Port direction
The direction of the in Ports and out Ports are additionally defined, i.e. whether it is a stimulus or a response for the FE.

⦁ An "in" after the port number represents a stimulus or a permanently present value,
⦁ An "out" after the port number represents a response.

Port information
The port information defines the information type and the semantic meaning of the information to be transmitted, e.g. "Cd_Indicate_signal_aspect".

<Port information> := <Information type> _<Information>

Information type: Msg (message), Cd (command), Con (configuration data), Site (site data) or project-specifically determined information types.

Information: semantic meaning of the information to be transmitted, e.g. Indicate_signal_aspect.

Data type
The data type which is assigned to any in port and out port is only shown on the diagram if it is necessary for a correct interpretation.

Initialisation of out ports
All data out ports are initialised. The initialisation can be carried out in the body of the init-block operation systematically named cOp1_init(). Alternatively it can be carried out directly in the transition effect of the transition
outgoing from initial state of the state machine. Trigger out ports are set to "FALSE" by default and are not explicitly initialised.

Example:
D25out_Redrive := FALSE;

The assignments of values to the corresponding out ports are to be interpreted as definitions. They become mandatory requirements (binding character "Req") when they are used in a mandatory requirement, such as a
transition of a state.

Modelling Standard

© EULYNX Partners Page 97 of 119

ID

Eu.ModSt.7527

Eu.ModSt.7528

Eu.ModSt.7529

Eu.ModSt.7530

Eu.ModSt.7531

Eu.ModSt.7824

Eu.ModSt.7825

Eu.ModSt.7532

Eu.ModSt.7533

Eu.ModSt.7534

Eu.ModSt.7535

Eu.ModSt.7826

Eu.ModSt.7827

Eu.ModSt.7828

Eu.ModSt.7536

Eu.ModSt.7565

Eu.ModSt.7566

Eu.ModSt.7567

Eu.ModSt.7568

Eu.ModSt.7830

Eu.ModSt.7934

Requirement

8.6.5.2 SysML proxy ports to describe a signal-based communication

A FE features interfaces that define event-driven in-flow of information consumed by the assigned state machine and event-driven out-flow of information generated by the assigned state machine.

The information flows are represented by SysML proxy ports typed with SysML interface blocks (4, 7).

The information objects to be exchanged are represented by signals. The interface blocks define the receptions for these signals.

When a signal is received, a signal event is triggered by the corresponding reception, which is then used as a trigger for a state transition, for example.

Proxy ports to describe a signal-based information flow are described according to the port definition schema below:

<Port information type><PNo><Port direction>_<Port information>:<Signature of Interface block aggregating information objects>.

Port information type
Used port information type: P or p

Ports and their interface blocks are written in small letter (such as p1inout : ~cc_w) if they are part of an internal connection between two FEs. In this case they are referred to as functional ports and have the colour green
like the corresponding FE (4).

Ports and their interface blocks are written in capital letters if they are part of an external connection (system interface) between a FE and the system environment (such as P3inout : W_P) or if they are open ports. In this case
they are referred to as logical ports and have the colour blue (7).

Ports which are part of a connection between TFEs or a TFE and the system environment (technical system interface) are referred to as technical ports and have the colour yellow (10). They start with a small letter if they are
part of an internal connection between two TFEs and with a capital letter if they are part of an external connection between a TFE and the system environment (technical system interface) or if they are open ports.

An information object defined as outgoing in the interface block (port type) becomes an incoming information object through conjugation. This conjugation is indicated by the character "~" preceding the corresponding interface
block (example: p1inout : ~cc_w).

Port number (PNo)
For each port of a FE/TFE with the port information type "P or p", a unique PNo is to be assigned in the format of a natural number. The ports need not be numbered consecutively.
For example port numbers like 1, 2, 3, 4, 5 are possible, but also 1, 3, 6.

Port direction
The direction of the ports are additionally defined ("in", "out", "inout").

Port information
Freely selectable and optional.

Signature of Interface block aggregating information objects
The information flow through a proxy port is represented by an interface block in which the receptions for the incoming and outgoing information objects are defined. The information objects are represented by signals. The use
of interface blocks and signals is described in the chapters 8.4.7 (Model view "Information Flow"), 8.6.6.9.4 (Signal event) and 8.6.6.10.1 (Event-driven responses using signals).

8.6.6 Model elements - state machines

In the following, the term "Functional Entity" and the corresponding abbreviation "FE" stand for both a FE and a TFE.

A FE is always in a state that abstracts a combination of values given in the FE. Events arriving at the FE lead to reactions - depending on the state - that change values of SysML out ports or SysML block properties, invoke a
local trigger or a call operation or send a signal via a port and result in new states.

The state machine diagrams (see figure 7569) are children of the state machine and illustrate its behaviour, i.e. they describe the stimulus-response behaviour of a FE. The state machine contains states and state transitions that
are triggered by trigger in ports, data in ports, internal broadcast events, signal events as well as timing events. The state transitions represent the binding functional requirements of the system to be specified.

State Machine Diagram (STD): defines the behaviour of a FE.

For each STD, a description must be inserted in the modelling tool (e.g. Properties ->Text->Description) that corresponds to a defined schema:
⦁ The SUS or SIUS receives a stimulus and responds with the result to....

Modelling Standard

© EULYNX Partners Page 98 of 119

ID

Eu.ModSt.7935

Eu.ModSt.7936

Eu.ModSt.7832

Eu.ModSt.1128

Eu.ModSt.7569

Eu.ModSt.7570

Eu.ModSt.7571

Eu.ModSt.7572

Eu.ModSt.7573

Eu.ModSt.7574

Eu.ModSt.7575

Eu.ModSt.7576

Eu.ModSt.7577

Requirement

A possible application of the schema is shown below using the example of the subsystem LS:
Information:
This state machine diagram describes the requirements for the following functionalities:
⦁ receives the observed Signal Aspect and reports this to the Subsystem - Electronic Interlocking
⦁ receives the observed intentionally dark state and reports this to the Subsystem - Electronic Interlocking
⦁ receives the observed Luminosity and reports this to the Subsystem - Electronic Interlocking

The description is to be transferred to "Requirements Part 2" of the specification document generated in the requirements management tool.

Diagram heading:
stm[State Machine]<><FE_TFE block signature><>[Functional Viewpoint<>-<>Subsystem Requirements or Interface Requirements<>-<>Functional Entity or Technical Functional Entity<>STD<DiaNo>]

<DiaNo> := Natural number starting with 1

Figure 7569 Example of a state machine diagram

8.6.6.1 Region

Each state machine contains at least one region, which itself can contain a number of states and pseudostates, as well as the transitions between them. During execution of a state machine, each of its regions has a single active
state that determines the transitions that are currently viable in that region. A region must have an initial pseudostate and can have a final state that correspond to its beginning and completion, respectively.

If a state machine contains a single region, it is represented by the area inside the frame of the state machine diagram and it is not to be named. Multiple regions are named and shown separated by dashed lines. A state
machine with multiple regions may describe some concurrent behaviour happening within the state machine's owning block.

8.6.6.2 State

The UML specification defines a state as „a situation during which some (usually implicit) invariant condition holds. The invariant may represent a static situation such as an object waiting for some external or internal event to
occur“. The „object“, in the present case the FE, is waiting for a stimulus from its environment or for an internal stimulus such as a time event or a local trigger.

Thus, a state represents a "between stimuli" condition of the external observable stimulus-response behaviour of a FE. In other words, it specifies the responses to incoming stimuli.

It is helpful to use the analogy that a block, i.e. the FE, is controlled by a switch. Each state corresponds to a switch position. The state machine defines all valid switch positions (i.e. states) and transitions between switch
positions (i.e. state transitions). If there are multiple regions, each region is controlled by its own switch with its switch positions corresponding to its states. The switch positions can be specified by a form of truth table - similar
to how logic gates can be specified - in which the current states and transitions define the next state.

In the example depicted in Figure 427, the state ST2 represents a "between stimuli condition", i.e. it constitutes the precondition for triggering a response in the form of Effect_1. Following the analogy that the FE is controlled
by a switch, the switch would be positioned to ST2. When Event_3 occurs Effect_1 is executed while the FE changes to state ST3.

Modelling Standard

© EULYNX Partners Page 99 of 119

ID

Eu.ModSt.7578

Eu.ModSt.7579

Eu.ModSt.7580

Eu.ModSt.7581

Eu.ModSt.7582

Eu.ModSt.7583

Eu.ModSt.7584

Requirement

Figure 427 Example of a state specifying a response

In the EULYNX requirements specification documents there are below the depicted state machine diagrams (as for example depicted in figure 33) the corresponding state transitions listed as atomic mandatory functional
requirements:

Info | Initial
Req | {Initial - ST1}
Info | ST1
Req | Event_1/{ST1 -ST2}
Info | ST2
Req | Event_2/{ST2 -ST1}
Req | Event_3/Effect_1; {ST2 - ST3}
Info | ST3

A state is represented on the state machine diagram by a round-cornered box containing its name.

Kinds of states:
The following three kinds of states are distinguished:

⦁ simple state (state with no regions and therefore without nested states),
⦁ sequential state (state with exactly one region) and
⦁ concurrent state (state with at least two regions)

Each state may contain entry and exit behaviour that are performed whenever the state is entered or exited respectively. Entry and exit behaviour are described as text expressions using the chosen action language preceded
by the keywords entry or exit and a forward slash.

A state machine can contain transitions, called internal transitions, which do not effect a change in state. An internal transition has the same source and destination and, if triggered, simply executes the transition effect.

By contrast, an external transition with the same source and destination state - sometimes called a transition-to-self - triggers the execution of that state's exit and entry behaviour as well as the transition effect.

Modelling Standard

© EULYNX Partners Page 100 of 119

ID

Eu.ModSt.7585

Eu.ModSt.7586

Eu.ModSt.7587

Eu.ModSt.7588

Eu.ModSt.7589

Eu.ModSt.7590

Eu.ModSt.7591

Eu.ModSt.7592

Eu.ModSt.7593

Eu.ModSt.7594

Eu.ModSt.7595

Eu.ModSt.7596

Eu.ModSt.7597

Eu.ModSt.7598

Eu.ModSt.7599

Eu.ModSt.7600

Eu.ModSt.7601

Eu.ModSt.7602

Eu.ModSt.7603

Eu.ModSt.7604

Eu.ModSt.7605

Eu.ModSt.7606

Eu.ModSt.7607

Requirement

Additional to the states, SysML includes a number of pseudostates to provide additional semantics. The difference between a state and a pseudostate is that a region can never stay in a pseudostate, which merely exists to help
determine the next active state.

The EULYNX methodology adopts the following SysML pseudostates:
⦁ initial pseudostate,
⦁ final state,
⦁ choice pseudostate,
⦁ fork pseudostate and
⦁ join pseudostate.

Pseudostates have a defined name, that may be visible on the diagrams.

8.6.6.3 Initial pseudostate and final state

An initial pseudostate is shown as a filled circle. It is used to determine the initial state of a region (see Figure 7609). The outgoing transition from an initial pseudostate may include an effect. Such effects are often used to set
the initial values of properties used by the state machine (e.g. call operation cOp1_init() shown in Figure 7609).

A final state is shown as a bulls-eye (i.e. a filled circle surrounded by a larger hollow circle). It indicates that a region has completed execution. When the active state of a region is the final state, the region has completed, and
no more transitions take place within it. Hence, a final state can have no outgoing transitions.

8.6.6.4 Choice pseudostate

A choice pseudostate is shown as a white diamond with one transition arriving and two or more transitions leaving. It is used to construct a compound transition path between states. The compound transition allows more than
one alternative path between states to be specified, although only one path can be taken in response to any single event.

Multiple transitions may either converge on or diverge from the choice pseudostate. When there are multiple outgoing transitions from a choice pseudostate, the selected transition will be one of those whose guard evaluates to
true at the time after the choice pseudostate has been reached. This allows effects executed on the prior transition to affect the outcome of the choice.

When a choice pseudostate is reached in the execution of a state machine, there must always be at least one valid outgoing transition. If not, the state machine is invalid.

If a compound transition contains choice pseudostates, any possible compound transition must contain only one trigger, normally on the first transition in the path.

8.6.6.5 Fork pseudostate

A fork pseudostate is shown as a vertical or horizontal bar with transition edges either starting or ending on the bar.

It has a single incoming transition and as many outgoing transitions as there are orthogonal regions in the target state. Unlike choice pseudostates, all outgoing transitions of a fork are part of the compound transition. When an
incoming transition is taken to the fork pseudostate, all the outgoing transitions are taken.

Because all outgoing transitions of the fork pseudostate have to be taken, they may not have triggers or guards but may have effects.

8.6.6.6 Join pseudostate

A join pseudostate is shown as a vertical or horizontal bar with transition edges either starting or ending on the bar.

The coordination of outgoing transitions from a concurrent state is performed using a join pseudostate that has multiple incoming transitions and one outgoing transition. The rules on triggers and guards for join pseudostates
are the opposite of those for fork pseudostates.

Incoming transitions of the join pseudostate may not have triggers or a guard but may have an effect. The outgoing transition may have triggers, a guard and an effect.

When all the incoming transitions can be taken and the join's outgoing transition is valid, the compound transition can occur. Incoming transitions occur first followed by the outgoing transition.

8.6.6.7 Simple state

As shown in the examples depicted in Figure 427 (states ST1, ST2, ST3) and Figure 7609 (state "OPERATIONAL"), a simple state has no regions and therefore no nested states.

A simple state may, like any kind of state, contain entry behaviour, that is executed immediately upon entering the state, exit behaviour, that is executed immediately before exiting the state, and behaviour executed during
internal transitions. (see Figure 7609). All three kinds of behaviour are not interruptible.

Modelling Standard

© EULYNX Partners Page 101 of 119

ID

Eu.ModSt.7608

Eu.ModSt.7609

Eu.ModSt.7610

Eu.ModSt.7611

Eu.ModSt.7612

Eu.ModSt.7613

Eu.ModSt.7614

Eu.ModSt.7615

Eu.ModSt.7616

Eu.ModSt.7617

Eu.ModSt.7618

Eu.ModSt.7619

Eu.ModSt.7620

Requirement

Figure 34 shows a simple example of a FE defining the functionality "Indicate signal aspect" of a light signal (LS) with a single OPERATIONAL state in its single region. A transition from the region's initial pseudostate goes to the
OPERATIONAL state. On entry, the light signal indicates that it is operational, setting the value of the out port "D3_Operational" to true, and on exit it indicates a non operational status, setting the value of "D3_Operational" to
false. While the light signal is in the state OPERATIONAL, it may receive commands to indicate a transmitted signal aspect (T1_Cd_Indicate_signal_aspect) and indicate it (D2_Signal_aspect). When in the OPERATIONAL state,
the internal trigger "T4_SIL_not_fulfiled" triggers a transition to the final state, and because there is only one single region, the state machine terminates.

Figure 7609 Example of a simple state

8.6.6.8 Transition

A transition specifies a change of state within a state machine. It is a directed relationship between a source and a destination state, and defines an event (trigger) and a guard (condition) that both lead to the state transition,
as well as an effect (behaviour) that is executed during the transition. Source and destination can be the same state (see T2 in Figure 7626).

Run to completion:
State machines always run to completion, which means that they are not able to consume another event until the state machine has completed the processing of the current event. Thus, the next event will be consumed only if
all effects (behaviour) of the previous event have been completed.

Run to completion does not mean that a state machine owned by a FE interconnected with neighbouring FE monopolises all FEs in this network until the run to completion step is complete.
The preemption restriction only applies to the context of the corresponding FE.

An event that cannot be consumed, for example because there is no matching transition, is discarded.

Transition notation:
A transition is shown as an arrow between two states, with the head pointing to the target state.

Transitions-to-self are shown with both ends of the arrow attached to the same state (see T2 in Figure 7626).

Internal transitions are not shown as graphical paths but are listed on separate lines within the state symbol (see T7 in Figure 7626).

The definition of the transition's behaviour is shown in a formatted string on the transition with the event first, followed by a guard in square brackets, and finally the transition effect preceded by a forward slash (event-effect
block or even-action block). As shown in Figure 7626, any or all of the behavioural elements as event, guard and effect may be omitted. In T5 for example, all the behavioural elements are omitted. Transition T3, to give another
example, is only triggered by an event without guard and effect.

Event:
An event specifies some occurrence that can be measured with regard to location and time and causes a transition to occur. Descriptions of the triggering events are provided in chapter 8.6.6.9 Event.

Guard:
The transition guard contains an expression that must evaluate true in the moment of the triggering event so that the transition is performed (see T1, T4 and T7 in figure 35). The guard is specified using a constraint which
includes an expression formulated in the applied action language to represent the guard condition. If preceded by an event (see T1 and T7 in Figure 7626) and if the event satisfies a trigger, the guard on the transition is
evaluated. If the guard evaluates to true, the transition is triggered; if the guard evaluates to false, then the event is consumed with no effect.

Modelling Standard

© EULYNX Partners Page 102 of 119

ID

Eu.ModSt.7621

Eu.ModSt.7622

Eu.ModSt.7623

Eu.ModSt.7624

Eu.ModSt.7625

Eu.ModSt.7626

Eu.ModSt.7627

Eu.ModSt.7628

Eu.ModSt.7629

Eu.ModSt.7630

Requirement

Transitions can also be triggered by internally generated completion events. For a simple state a completion event is generated when the entry behaviour (for example Entry/effect3 in Figure 7626) has completed.

Thus, where a guard is shown without a preceding event (see T4 in Figure 7626), the guard condition is evaluated immediately after entering the source state, i.e. after its entry behaviour has completed, and a transition takes
place if true, triggered by the generated completion event of the source state.

Please note: if the guard condition of a transition without trigger changes to true while the state machine is already in the source state (for example in state ST2), the guard condition won't be evaluated and no transition will
take place.

Effect:
The effect is a behaviour executed when entering or exiting a state (entry and exit behaviour, respectively), during an internal transition (see T7 in Figure 7626) and during the external transition from one state to another (see
T1 in Figure 7626). If an external transition is triggered, first the exit behaviour of the current (source) state, then the transition effect and finally the entry behaviour of the target state are executed.
Descriptions of the effects used in the methodology underlying this Modelling standard are provided in chapter 8.6.6.10 Effect.

A transition may also be formulated textually as atomic functional requirement:
Event [Guard]/Effect {Source state - Target state}.

Figure 7626 Transition notation

8.6.6.9 Event

An event specifies some occurrence that can be measured with regard to location and time and causes a transition to occur.

In the EULYNX methodology, the following types of events are used:
⦁ Change event,
⦁ Time event
⦁ Internal broadcast event
⦁ Signal event.

8.6.6.9.1 Change event

Modelling Standard

© EULYNX Partners Page 103 of 119

ID

Eu.ModSt.7631

Eu.ModSt.7632

Eu.ModSt.7633

Eu.ModSt.7634

Eu.ModSt.7635

Eu.ModSt.7636

Eu.ModSt.7637

Requirement

A change event indicates that some condition has been satisfied, that is, the value of a specified Boolean expression holds. A defined change event occurs during system operation each time the specified Boolean expression
toggles from false to true. Change events are continuously evaluated.

According to the EULYNX methodology, the Boolean expression of a change event may contain the following arguments:
⦁ Data In Port,
⦁ block property
⦁ block operation.

Notation of change events:
Change events use the term „when“ followed by the Boolean expression that has to be met in parenthesis. Like other constraint expressions, the Boolean expression is to be expressed in text using the applied action language:

when(boolean expression)[guard]/effect;

8.6.6.9.2 Time event

A time event indicates that a given time interval has passed since the current state was entered.

Notation of time events:
Time events use the term "after“ followed by the time period (in milliseconds by default) in parenthesis, e.g. after(D1_Con_t1) as depicted in Figure 7638.

"after" indicates that the time is relative to the moment the state is entered. The transition T1 shown in Figure 7638 is, for example, triggered after the time D1_Con_t1 has expired. The time starts on entering the state ST1.

Modelling Standard

© EULYNX Partners Page 104 of 119

ID

Eu.ModSt.7638

Eu.ModSt.7639

Eu.ModSt.7640

Eu.ModSt.7641

Requirement

Figure 7638 Example of the usage of time events

8.6.6.9.3 Internal broadcast event

Internal broadcast events occur when corresponding SysML block operations are invoked. They are supposed to submit broadcasts within the state machine of a FE.

In Figure 7642 for example, the SysML block operations bc1_Bc_info() and bc2_Bc_info() represent internal broadcast events. During transition T1, the internal broadcast event bc1_Bc_info() is invoked in order to trigger
transition T3. Furthermore, during transition T4, the internal broadcast event bc2_Bc_info() is invoked to trigger transition T2.

Modelling Standard

© EULYNX Partners Page 105 of 119

ID

Eu.ModSt.7642

Eu.ModSt.7643

Eu.ModSt.7644

Requirement

Figure 7642 Example of the usage of internal broadcast events

8.6.6.9.4 Signal event

A signal event is generated when a reception of an interface block receives a signal. This is then used in the state model to trigger a state transition (1).

Modelling Standard

© EULYNX Partners Page 106 of 119

ID

Eu.ModSt.7645

Eu.ModSt.7646

Eu.ModSt.7647

Eu.ModSt.7648

Eu.ModSt.7649

Eu.ModSt.7650

Eu.ModSt.7651

Eu.ModSt.7652

Requirement

Figure 7645 Example of a signal event

8.6.6.10 Effect

An effect is a behaviour executed when entering or exiting a state (entry and exit behaviour, respectively), during an internal transition or during an external transition from one state to another.

The sequence of effect execution is demonstrated in figure 7649. Transition T1 is taken immediately on completion of effect1. The sequence of effect execution when event2 occurs (T3) is: effect4, then effect5, then effect2.
Event1 generates only one effect (T2): effect3.

Figure 7649 Sequence of effect execution

The following elements of behaviour may be represented as effect:
⦁ Event-driven responses using signals,
⦁ Responses in form of continuous flows,
⦁ Call behaviour.

8.6.6.10.1 Event-driven responses using signals

As shown in Figure 7652, signals (1) are sent as an effect of a state transition or triggered in a block operation via the corresponding port (2) of the respective FE.

Modelling Standard

© EULYNX Partners Page 107 of 119

ID

Eu.ModSt.7653

Eu.ModSt.7654

Eu.ModSt.7655

Eu.ModSt.7656

Eu.ModSt.7657

Eu.ModSt.7658

Eu.ModSt.1013

Eu.ModSt.551

Eu.ModSt.1016

Eu.ModSt.552

Eu.ModSt.7660

Requirement

Figure 7653 Sending a signal

8.6.6.10.2 Responses in form of continuous flows

A response is sent in form of a continuous flow by assigning the desired value to a data out port, e.g. D1out_Temperature := 40.

All out ports are initialised. The initialisation can be carried out in the body of the init-block operation systematically named cOp1_init(). Alternatively it can be carried out directly in the transition effect of the transition outgoing
from initial state of the state machine.

Furthermore, the sender of a response must always configure the current value of the Data Out Port.

8.6.6.10.3 Call behaviour

Call behaviour is invoked on demand, executed and terminated after execution. It is supposed to define event-driven data transformations. The algorithm of the data transformations is to be described in the body of the
corresponding block operation using ASAL (see chapter 8.6.8).

Naming of Call behaviour
cOp<Id>_<behaviour name>,
Example: cOp2_establish_safe_state

Id: Natural number starting with 1

The call behaviour to initialise the block properties and out ports of a FE is to be named cOp1_init() systematically.

8.6.6.11 Composite state

Modelling Standard

© EULYNX Partners Page 108 of 119

ID

Eu.ModSt.7661

Eu.ModSt.7662

Eu.ModSt.7663

Eu.ModSt.7664

Eu.ModSt.7665

Eu.ModSt.7666

Eu.ModSt.7667

Eu.ModSt.7668

Eu.ModSt.7669

Eu.ModSt.7670

Eu.ModSt.7671

Eu.ModSt.7672

Eu.ModSt.7673

Requirement

States can have regions. Such states are called composite states or hierarchical states. They allow state machines to scale to represent state-based behaviour of any complexity. A composite state may have one single region
(sequential state) but also multiple orthogonal regions (concurrent state or orthogonal composite state).

Instead of using a region to decompose the behaviour of a state, a state machine diagram may be assigned to the corresponding state alternatively, defining its behaviour.

Each region or state machine diagram assigned to a state has a set of mutually exclusive disjoint subvertices and a set of transitions. In other words, it typically will contain an initial pseudostate and a final state, a set of
pseudostates, and a set of substates, which may themselves be composite states.

Any state enclosed within a region of a composite state is called a substate of that composite state.

8.6.6.12 Sequential state

A sequential state, such as ST2 shown in the example depicted in Figure 7674, is a composite state that has one region.

Figure 7674 shows the decomposition of the state ST2 into the substates ST2_1 and ST2_2. On entry to the state ST2, two entry behaviours are executed: the entry behaviour of ST2, T9_Response_1 := true and then the entry
behaviour of ST2_1, T15_Response_7 := true. This is because on entry, as indicated by the initial pseudostate, the initial substate of ST2 is ST2_1.

When in state ST2_1, T2_Stimulus_2 will cause the transition T2 to the state ST2_2 and will successively process T16_Response_8 := true, T12_Response_4 := true and T13_Response_5 := true. If T5_Stimulus_5 is received
while in state ST2_2, the change event will trigger the transition T4 to the final state. A completion event is generated when the final state is reached, triggering the transition T5 to state ST1. When leaving ST2, T11_Response_
3 := true is executed.

A composite state (sequential state or concurrent state) may be porous, which means transitions such as transition T3 and T6 shown in Figure 7674 may cross the state boundary, starting or ending on states within its regions.

In the case of a transition ending on a nested state, such as transition T6 shown in Figure 7674, the behaviours are executed in this order:
1. the effect T14_Response_6 := true of the transition T6,
2. the entry behaviour T9_Response_1 := true of the composite state,
3. the entry behaviour T13_Response_5 := true of the transition's target nested state.

In the opposite case, such as transition T3 shown in Figure 7674, the behaviours are exited in this order:
1. the exit behaviour T16_Response_8 := true of the source nested state,
2. the exit behaviour of the composite state T11_Response_3 := true is executed,
3. the transition effect T17_Response_9 := true.

In the case of more deeply nested state hierarchies, the same rule can be applied recursively to all the composite states whose boundaries have been crossed.

If T1_Stimulus_1 is received while in state ST2, the change event will trigger the internal transition T7 and the effect T10_Response_2 := true will be executed without a change of state.

Modelling Standard

© EULYNX Partners Page 109 of 119

ID

Eu.ModSt.7674

Eu.ModSt.7675

Eu.ModSt.7676

Eu.ModSt.7677

Eu.ModSt.7678

Eu.ModSt.7679

Eu.ModSt.7680

Eu.ModSt.7681

Eu.ModSt.7682

Requirement

Figure 7674 Example of a sequential state

8.6.6.13 Concurrent state

A concurrent state as shown in Figure 7683, sometimes also called an orthogonal composite state, contains at least two regions.

When a concurrent state is active, each region has its own active state that is independent of the others, and any incoming event is independently analysed within each region.

A transition that ends on the concurrent state, such as transition T1 in Figure 7683, will trigger transitions from the initial pseudostate of each region, so there must be an initial pseudostate in each region for such a transition to
be valid.

Similarly, a completion event for the concurrent state will occur when all the regions are in their final state.

When an event, as for example the internal broadcast event bc1_Bc_info shown in Figure 7683, is associated with triggers in multiple orthogonal regions, the event may trigger a transition in each region (e.g. transitions T3 and
T5), assuming the transition is valid based on the other usual criteria.

Please note: a transition can never cross the boundary between two regions of the same concurrent state.

In addition to transitions that start or end on the concurrent state, such as transition T1 in Figure 7683, transitions from outside the concurrent state may start or end on the nested states of its regions. In this case, one state in
each region must be the start or end of one of a coordinated set of transitions. This coordination is performed by a fork pseudostate in the case of incoming transitions, such as T8.1, T8.2 and T8.3 in Figure 7683, and a join
pseudostate for outgoing transitions, such as T6.1, T6.2 and T6.3 in Figure 7683.

Modelling Standard

© EULYNX Partners Page 110 of 119

ID

Eu.ModSt.7683

Eu.ModSt.7684

Eu.ModSt.7685

Eu.ModSt.7686

Eu.ModSt.7687

Requirement

Figure 7683 Example of a concurrent state

8.6.6.14 Decomposition of states using state machine diagrams

Instead of decomposing the behaviour of a state within a region of a sequential state or multiple regions of a concurrent state, the behaviour may alternatively be specified by a state machine diagram assigned to the
corresponding state (see Figure 7689).

The region of the corresponding state machine diagram typically will contain an initial pseudostate and a final state, a set of pseudostates, and a set of substates, which themselves may be decomposed by state machine
diagrams.

As illustrated in Figure 7689, a transition (e.g. transition T1) ending on a state (e.g. state ST2) that is refined by a state machine diagram will trigger the transition from the initial pseudostate of the diagram to its initialising
state (e.g. state ST2_1).

Modelling Standard

© EULYNX Partners Page 111 of 119

ID

Eu.ModSt.7688

Eu.ModSt.7689

Eu.ModSt.7690

Eu.ModSt.7691

Eu.ModSt.7692

Eu.ModSt.7693

Eu.ModSt.7694

Requirement

Similarly, when the behaviour specified on the state machine diagram completes (e.g. the final state is entered after triggering the transition T2), it will generate a completion event that can trigger transitions (e.g. transition T3)
whose source is the state (e.g. state ST2) the state machine diagram is assigned to.

Figure 7689 Principle of decomposing states by means of state machine diagrams

8.6.6.15 Transition firing order in nested state hierarchies

The same event may trigger transitions at several levels in a state hierarchy, and with the exception of concurrent regions, only one of the transitions can be taken at a time. Priority is given to the transition whose source state
is innermost in the state hierarchy.

Suppose the state machine depicted in Figure 7695 is in its initial state (i.e. in state ST1_1_1 and ST1_2_1). The stimulus T1_Stimulus_1 is associated with the triggers of the transitions T1, T2 and T3, each with guards based
on the value of D2_No.

The following list shows the transitions that will fire upon receipt of T1_Stimulus_1 based on values of D18_No from -1 to 1 if the system is in the states ST1_1_1 and ST1_2_1:
⦁ D2_No equals -1: transition T3 will be triggered because it is the only transition with a valid guard;
⦁ D2_No equals 0: transition T1 will be triggered because, although transition T3 also has a valid guard, state ST1_1_1 is the innermost of the two source states; or
⦁ D2_No equals 1: both transitions T1 and T2 will be triggered because both their guards are valid.

The normal rules for execution of exit behaviour apply, so, before the transition from state ST1 to state ST2 can be taken, any exit behaviour of the active nested states of state ST1, as well as the exit behaviour of state ST1,
must be executed.

Modelling Standard

© EULYNX Partners Page 112 of 119

ID

Eu.ModSt.7695

Eu.ModSt.1078

Eu.ModSt.1082

Eu.ModSt.1083

Eu.ModSt.7831

Eu.ModSt.7833

Eu.ModSt.7834

Eu.ModSt.7837

Eu.ModSt.7839

Eu.ModSt.7537

Eu.ModSt.7538

Eu.ModSt.7539

Eu.ModSt.1940

Eu.ModSt.7541

Requirement

Figure 7695 Illustration of transition firing order

8.6.6.16 Interaction between state machines

State machines in different blocks, may interact with one another by sending stimuli and returning responses. For example, the state machine of one block can send a stimulus to another block as part of a transition effect or
state behaviour. The event corresponding to the receipt of this stimulus by the receiving block can trigger a state transition in its state machine.

Thus, different behaviour, each specifying a certain functionality of the system, may be encapsulated in blocks and interconnected with each other in a network of FEs or TFEs, i.e. in a Functional or Technical Functional
Architecture.

8.6.7 Bindings (see chapter 8.2.1)

Diagram of model view "Functional Entity" (ibd and stm) has a ''Req'' binding.

Diagram of model view "Technical Functional Entity" (ibd and stm) has a ''Req'' binding.

The algorithm defined in a time advanced operations has a ''Req'' binding.
The algorithm defined in a time advanced operation represents the mandatory externally visible behaviour of a FE or TFE in place of or in cooperation with a state machine.

Transitions, states, ports, block operations and block properties have ''Def'' bindings.

8.6.8 Action language

The EULYNX methodology follows the objective of creating executable specification models. In order to specify the necessary executable behaviours in a target language independent way, the Atego Structured Action Language
(ASAL) is used.

ASAL is used to specify block operations or Event Action Blocks that define the transition effects on state machine diagrams.

A description of data types, logical operators and basic statements of the Atego Structured Action Language (ASAL) is provided below.

8.6.8.1 Logical operators

Modelling Standard

© EULYNX Partners Page 113 of 119

ID

Eu.ModSt.7542

Eu.ModSt.7840

Eu.ModSt.7543

Eu.ModSt.7544

Eu.ModSt.294

Eu.ModSt.7546

Eu.ModSt.7547

Eu.ModSt.7548

Eu.ModSt.7906

Eu.ModSt.7907

Eu.ModSt.269

Eu.ModSt.270

Requirement

⦁ Greater than: >
⦁ Less than: <
⦁ Greater than or equal: >=
⦁ Less than or equal: <=
⦁ Equal: =
⦁ Not equal: <>
⦁ Conjunction: AND
⦁ Disjunction: OR
⦁ Negation: NOT
⦁ Exclusive disjunction: XOR

The logical operators "AND", "OR", "NOT" and "XOR" are to be written in capital letters.

8.6.8.2 Data types

As the EULYNX specification approach follows the objective of creating executable specification models, the range of data types is limited to data types the simulation tool SySim supports (SySim value types).

Only the SySim value types, including the redefined data types "PulsedIn" and "PulsedOut" may be used for the specification of systems requirements :
⦁ Boolean
⦁ DateTime
⦁ Single
⦁ String
⦁ Decimal
⦁ Double
⦁ Long
⦁ Integer
⦁ Timespan
⦁ PulsedIn
⦁ PulsedOut

The data types “PulsedIn” and “PulsedOut” represent redefinitions of the data type Boolean and are exclusively reserved to be assigned to Trigger Ports (T-Ports). That is, a Trigger In Port is typed with the data type "PulsedIn"
and a Trigger Out Port with the data type "PulsedOut".

Outgoing data typed with “PulsedOut” (as default false) that are set to true (for example, T1out_Cd_indicate_signal_aspect := true) automatically change back to false after a defined time. The defined time frame is sufficient to
trigger a transition in a receiving state machine.

Incoming data at receiver side typed with “PulsedIn” apply the behaviour of the corresponding outgoing data at sender side typed with “PulsedOut”.

For the typing of proxy ports, the specially adapted interface blocks are to be used:
⦁ IBoolean
⦁ IDateTime
⦁ IDecimal
⦁ IDouble
⦁ IInteger
⦁ ILong
⦁ ISingle
⦁ IString

The data types "PulsedIn" and "PulsedOut" can only be used with flow ports but not in connection with proxy ports.

8.6.8.3 Declaring variables

The Declare statement declares local variables.
The syntax is as follows:
declare <variable list> : <type> ;
Where:
· <variable list> - specifies a list of variables that are being declared. For each variable an optional initial value can be set through the ':=' assignment operator.
· <type> - specifies the type of the variables that are being declared.

Modelling Standard

© EULYNX Partners Page 114 of 119

ID

Eu.ModSt.7549

Eu.ModSt.7550

Eu.ModSt.7551

Eu.ModSt.7552

Eu.ModSt.7553

Eu.ModSt.7554

Eu.ModSt.7555

Eu.ModSt.7556

Eu.ModSt.7557

Requirement

Example:
declare A : Boolean;
declare B := False : Boolean;
declare C, D := 0 : Integer;

8.6.8.4 Reading the value of a port

The value of a port may be read using the name of the port on its own:
The syntax is as follows:
<A> := <port>;
Where:
<port> specifies the port whose value is being read.
<A> specifies for example the value property the value of the port is to be assigned to.

Example:
Mem_D1_Signal_aspect := D1_Signal_aspect;

8.6.8.5 Setting the value of a port

The value of a port may be set using the name of the port:
The syntax is as follows:
<port> := <value>;
Where:
· <port> - specifies the port whose value is being set.
· <value> - specifies the value that is being set for the port.

Example:
T1_Cd_Indicate_signal_aspect := true;

8.6.8.6 Calling an operation

To call an Operation item in ASAL, reference the Operation with its default (the default is 'This'). You must use parentheses for the operation, even if there are no parameters to pass.
The syntax is as follows:
<operation> ([<parameters>]);
Where:
· <operation> - specifies the operation that is being called.
By default, the Operation is called against 'This'.
· <parameters> - specifies any parameter values that are passed to the operation that is being called.

Examples:
MyOperation(True);
OperationWithNoParameters();

8.6.8.7 Assigning values to variables

Values can be assigned to variables.
The syntax is as follows:
<variable> := <expression> ;
Where:
· <variable> - specifies the variable that is being assigned.
· <expression> - specifies the value that is being assigned, which can be defined through an expression.

Example:
Mem_ped_wait := False;

8.6.8.8 Conditional execution of code

Modelling Standard

© EULYNX Partners Page 115 of 119

ID

Eu.ModSt.7558

Eu.ModSt.7559

Eu.ModSt.7560

Eu.ModSt.7561

Eu.ModSt.7562

Eu.ModSt.7563

Requirement

The if, then, else statements provide a mechanism for conditional execution of code.
The syntax is as follows:
if <condition> then
... //code to execute
elseif <condition> then
... //code to execute
else
... //code to execute
end if
Where:
· <condition> - specifies the condition that is being tested.

Example:
if A < 100 then
A := A + 1;
elseif B < 100 then
B := B + 1;
else
NowStop := True;
end if

8.6.8.9 While loops

The while loop provides a mechanism for executing code while a condition is true.
The syntax is as follows:
while <condition>
... //code to execute
end while
Where:
· <condition> - specifies the condition that is being tested.

Example:
while A < 100
A := A + 1;
end while

8.6.8.10 Case selection

The case selection provides a mechanism for executing code when a case is true.
The syntax is as follows (note that there can be many cases):
select case <condition>
case <condition>:
... //code to execute
case else:
... //code to execute
end select
Where:
· <condition> - specifies the condition that is being tested.

Example:
select case A + B
case 200:
ResultIs200 := True;
case else:
ResultIs200 := False;
end select

8.6.8.11 Return statement

Modelling Standard

© EULYNX Partners Page 116 of 119

ID

Eu.ModSt.7564

Eu.ModSt.287

Eu.ModSt.288

Eu.ModSt.289

Eu.ModSt.290

Eu.ModSt.291

Eu.ModSt.825

Eu.ModSt.826

Eu.ModSt.827

Eu.ModSt.828

Eu.ModSt.829

Eu.ModSt.830

Eu.ModSt.831

Eu.ModSt.832

Requirement

The Return statement can return the result of an expression.
The syntax is as follows:
return <expression> ;
Where:
· <expression> - specifies the expression that returns the result.

Example:
return A + B;

8.6.8.12 Comments

The Comment statement specifies text that is ignored by the target language.
The syntax is as follows for single line comments:
// <text>
Where:
· <text> - specifies the text that is generated as a comment.

Example:
// return the sum of A + B

8.6.8.13 Example program written in ASAL

This is an example program that is written in ASAL.
declare A := 0, B: Integer; // Former declared variable initialized, latter is not. Both share the same type
declare GoOn := True : Boolean;
declare NowStop := False : Boolean;
B := 0; // Assignment
NowStop := not B = 0 AND (GoOn or NowStop); // Assignment (it's False) using a logical expression
while GoOn AND NOT NowStop do // While loop
if A < 100 then // Condition  if
A := A + 1;
elseif B < 100 then // Condition, elseif
B := B + 1;
else // Condition, else
NowStop := True;
end if // end of condition.
end while
declare TestOk : Boolean;
select case A + B // Selection statement. It's similar to C/C++ switch (but no “break”, only one case is executed at most)
case 199 + (A + B) / (A + B): // Case expression, equates to 200
TestOk := True;
case else: // Default case
TestOk := False;
end select
return A + B; // Return statement

9 References

[1] OMG Systems Modeling Language (OMG SysML TM),https://sysml.org/.res/docs/specs/OMGSysML-v1.6-19-11-01.pdf

[2] OMG Unified Modeling Language TM (OMG UML), https://www.omg.org/spec/UML/2.5.1/PDF

[3] KnowGravity Inc., RIAL Risk Analysis 10, 30.11.2014

[4] M. Broy, K. Stølen, Specification and development of interactive systems, Focus on streams, interfaces, and refinement, Springer-Verlag New York, Inc, 2001

[5] T. Weilkiens, Systems Engineering with SysML/UML, Modeling, Analysis, Design, dpunkt.verlag GmbH, Heidelberg, Germany, 2006

[6] J. Braband, B-E. Brehmke, S. Griebel, H. Peters, K-H Suwe, The CENELEC-Standards regarding Functional Safety, Eurailpress, 2006

[7] H. König, Protocol Engineering, B. G. Teubner Verlag, 2003

Modelling Standard

© EULYNX Partners Page 117 of 119

ID

Eu.ModSt.833

Eu.ModSt.834

Eu.ModSt.835

Eu.ModSt.836

Eu.ModSt.837

Eu.ModSt.838

Eu.ModSt.839

Eu.ModSt.840

Eu.ModSt.841

Eu.ModSt.842

Eu.ModSt.843

Eu.ModSt.844

Eu.ModSt.845

Eu.ModSt.846

Eu.ModSt.847

Eu.ModSt.848

Eu.ModSt.889

Eu.ModSt.1495

Eu.ModSt.1469

Eu.ModSt.1477

Eu.ModSt.1502

Eu.ModSt.1517

Eu.ModSt.1568

Eu.ModSt.3552

Eu.ModSt.7072

Eu.ModSt.7911

Eu.ModSt.7916

Eu.ModSt.302

Requirement

[8] R. J. Wieringa, Design methods for reactive systems, Elsevier Sience (USA), 2003

[9] KnowGravity Inc., Modelling Interlocking Requirements using UML, A Guideline, UIC/Euro-Interlocking, 2002

[10] M. Debbabi, F. Hassaine, Y. Jarraya, A. Soeanu, L. Alawneh, Verification and Validation in Systems Engineering, Springer-Verlag Berlin Heidelberg, 2010

[11] T. Koch, Rechnergestützter Sicherheitsnachweis: Ein Verfahren zum Ausschluss gefährlicher Systemzustände in rechnergesteuerten Eisenbahn- Sicherungsanlagen, Dresden: Technische Universität, Fakultät
Verkehrswissenschaften „Friedrich List“, Diss. 1997

[12] M. Burkhard, M. Hoeft, Bericht Zielarchitektur ESTW, Deutsche Bahn AG Systemverbund Bahn VTZ 12, Stand 0.92, 18.01.2009

[13] Atego Modeler, Help

[14] http://de.ptc.com/application-lifecycle-management/integrity/modeler

[15] http://de.ptc.com/application-lifecycle-management/integrity/modeler/sysim

[16] http://de.ptc.com/application-lifecycle-management/integrity/modeler/reviewer

[17] CENELEC: EN 50126, Railway Applications - The Specification and Demonstration of Reliability, Availability, Maintainability and Safety (RAMS)

[18] J. Ernst, Das Sp Dr S60-Stellwerk, Eisenbahn-Fachverlag, Heidelberg/Mainz, 1978

[19] O. Lemke, A. Harhurin, K-D Sievers, Systems-Engineering-Prozess für LST-Anwendungen unter Berücksichtigung aktueller Normen, DB Netz AG- I.NVT 31, 2011

[20] I. Jacobson, M. Griss and P. Jonsson, Software Reuse: Architecture Process and Organisation for Business Success, Addison-Wesley 1997

[21] Shane Sendall and Alfred Strohmeier, From use cases to system operation specifications, In Stuart Kent and Andy Evans, editors, UML 2000 - The Unified Modeling Language: Advancing the Standard, Third International
Conference, volume 1939 of LNCS. Springer, 2000

[22] Alistair Cockburn, Writing Effective Use Cases, Addison Wesley, 2001.

[23] Heldal Rogardt, Use Cases are more than System Operations, Chalmers University of Technology, Gothenburg, Schweden.

[24] Sanford Friedenthal, Alan Moore, Rick Steiner, A Practical Guide to SysML, Third Edition: The Systems Modeling Language, The MK/OMG Press, 2015.

[25] Klaus Pohl, Harald Hönninger, Reinhold Achatz, Manfred Broy, Model-Based Engineering of Embedded Systems, The SPES 2020 Methodology, Springer-Verlag Berlin Heidelberg 12.

[26] Klaus Pohl, Manfred Broy, Heinrich Daembkes, Harald Hönninger, Advanced Model-Based Engineering of Embedded Systems, Extensions of the SPES 2020 Methodology, Springer International Publishing AG 2016.

[27] Christer Löfving, Arne Borälv, Formal Methods Taxonomy and Survey, X2Rail-2 Deliverable D5.1, 16.05.2018

[28] https://de.mathworks.com/products/simulink.html

[29] The Institute of Electrical and Electronics Engineers, Inc.: IEEE Recommended Practice for Architectural Description of Software-Intensive Systems. IEEE Std. 1471-2000. New York, 2000

[30] Osamu Shigo, Atsushi Okawa, Daiki Kato: Constructing Behavioral State Machine using Interface Protocol Specification, 13th Asia Pacific Software Engineering Conference (APSEC'06), IEEE 2006

[31] https://www.eulynx.eu/

[32] Deliverable D10.2 Proposed extension of specification approach to meet needs of RCA, WP 10, X2Rail-5, 13.01.2022

10 Appendix A - Reference Tool Chain

A tool chain that fully supports the EULYNX MBSE process is shown below and is intended to be a reference for the use of alternative tools. When using alternative tools, make sure that they have the same capabilities.

The EULYNX MBSE process is currently supported by a toolchain as illustrated in Figure 3553. It enables the creation of SysML specification models (Windchill Modeler), static checks for completeness, correctness, and
consistency (Windchill Reviewer) and simulation-based validation of the models (Windchill Modeler SySim and MS Visual Studio). A connection to IBM Rational DOORS (Windchill Integration for IBM Rational DOORS) enables the
representation of specification model elements in the form of atomic requirements in the requirements management tool. They can be transformed into the standardised Requirements Interchange Format (ReqIF) and
exchanged with suppliers using Windchill Requirements Connector.

Modelling Standard

© EULYNX Partners Page 118 of 119

ID

Eu.ModSt.3553

Eu.ModSt.303

Eu.ModSt.304

Eu.ModSt.3554

Eu.ModSt.3557

Eu.ModSt.3555

Eu.ModSt.3558

Eu.ModSt.3556

Eu.ModSt.3559

Eu.ModSt.305

Requirement

Figure 3553 EULYNX Tool chain

10.1 Windchill Modeler

Windchill Modeler [14], an all-in-one integrated collaborative development tool suite, is used to create the EULYNX SysML specification models. It provides systems and software modelling and component-based development
targeted for technical systems and provides comprehensive notation support for the leading industry standards, including OMG SysML, OMG UML, UPDM (DoDAF and MODAF), OVM, data modelling, and architectural frameworks.

10.2 IBM Rational DOORS

Requirements management tool IBM Rational DOORS is used to organise the specification contents in a format conforming to classical requirements management (atomic requirements with unique identifiers and allocated
bindingness). The requirements are structured in the form of DOORS-objects in the DOORS-modules representing the specification documents. The specification models created in the Windchill Modeler are represented as
surrogates in the DOORS-modules structured in the form of atomic requirements.

10.3 Windchill Integration for IBM Rational DOORS

Windchill Modeler is connected to the requirements management tool IBM Rational DOORS via the Windchill Integration for IBM Rational DOORS. This connection enables the creation and synchronisation of surrogates of the
specification models in the requirements management tool.

10.4 Windchill Requirements Connector

Windchill Requirements Connector is used to transform DOORS-modules into Requirements Interchange Format (ReqIF) and retransform ReqIF files into DOORS format.

10.5 Windchill Modeler SySim

Modelling Standard

© EULYNX Partners Page 119 of 119

ID

Eu.ModSt.306

Eu.ModSt.307

Eu.ModSt.308

Eu.ModSt.309

Eu.ModSt.310

Eu.ModSt.311

Requirement

Windchill Modeler SySim [15] is used together with Windchill modeler and MS Visual Studio to create executable specifications (virtual prototypes) from SysML specification models and validate their behaviours by means of
simulation-based testing. That way it is ensured that the corresponding specification model is consistent and formally correct without the need to focus on lower-level details such as code generation or target environments.

Furthermore, Windchill Modeler SySim allows the generation of appropriate and intuitive simulation graphics. Graphical components are automatically prepared in an MS Visual Studio toolbox, from which they can be dropped
onto a form to create each user interface, for a given simulation scenario. Predefined graphical components are also provided for the most common functions, such as input and output. Developing new graphical components is
also made easy, using the de-facto standard Microsoft .NET platform.

10.6 MS Visual Studio

MS Visual Studio is applied to create graphical user interfaces used to play through simulation scenarios and build executables from simulation code generated by Windchill Modeler SySim.

10.7 Windchill Modeler Reviewer

Windchill Modeler Reviewer [16] provides a quick way of reviewing items in a model using provided and optionally user-defined reviews. EULYNX SysML specification models can quickly be checked for completeness, correctness
and consistency using the corresponding reviews. Summary reports may be created that provide statistical analysis of review failures and metrics relating to items in a model. Furthermore, user-defined reviews may be created
to include in reports.

