&8 EULYNX

EULYNX Initiative

Modelling Standard

Document number: Eu.Doc.30
Version: 4.2 (1.A)

© EULYNX Partners

Modelling Standard

1
1.1
1.2
1.3

1.3.1
1.3.2
1.4
1.5

2

3
3.1
3.2

5.1
5.2
5.2.1

6

7
7.1
7.2
7.3

8

8.1
8.1.1
8.1.1.1
8.1.1.2
8.1.1.3
8.1.14
8.1.1.5
8.1.2
8.1.2.1
8.1.2.1.1
8.1.2.1.2

© EULYNX Partners

Contents

Introduction
Release information
Impressum
Purpose
About this Modelling Standard
Audience
Terms and abbreviations

Related documents
Abbreviations

Introduction
Motivation

Structure of the Modelling Standard
MBSE Specification Framework

Modelling Language
Systems Modeling Language (SysML)
Action Language

The role of data types
Tools

User Requirements
Overview
Safety requirements

Formulation of user requirements

Architecture Model MBSE

Overview of the EULYNX MBSE methodology

Characteristics of EULYNX subsystems
System
Reactive system

Control system

Typical control loop of a EULYNX subsystem
Interpretation of the concept of "Function"
Principle of model-based definition of requirements

Applied description methods for model-based requirements

Operational specification

Stimulus-response specification

Table of Contents

N N N = = = s =

N

S

10

10

10

10
11
11

12

14
14
14
15
15
15
17
18
18
18
19

Modelling Standard
8.1.2.1.3
8.1.2.1.4

8.1.3
8.1.3.1
8.1.3.2

8.2

8.2.1

8.2.2

8.2.3
8.2.3.1
8.2.3.2
8.2.3.3
8.2.3.4
8.2.3.5

8.2.4

8.2.5

8.3

8.3.1

8.3.2
8.3.2.1
8.3.2.2
8.3.2.3

8.3.3

8.3.4
8.3.4.1
8.3.4.2
8.3.4.3

8.3.5

8.3.6
8.3.6.1
8.3.6.2
8.3.6.3

8.3.7

8.3.8
8.3.8.1
8.3.8.2
8.3.8.3

8.3.9

8.3.10
8.3.10.1
8.3.10.2
8.3.10.3

© EULYNX Partners

Description method using use case scenarios

Description method using state machines

Overview introduction to the EULYNX MBSE Process

Engineering path SUS

Engineering path SIUS

Model views - General modelling rules

Binding nature of the requirements and their structuring
Modelling Pattern for interlocking systems

Introduction of the basic structural model elements

Logical Structural Entity (LSE)

Functional Entity (FE)

Environmental Structural Entity (ESE)

Technical Structural Entity (TSE) or Technical Functional Entity (TFE)
Information objects

Interface centric specification

Functional packages

Model views used to specify EULYNX subsystems

Model View "Functional Context" of a SUS (AL1) - Description
Model View "Functional Context" of a SUS (AL1) - Modelling rules
SysML Diagram

Model elements

Binding (see chapter 8.2.1)

Model View "Use case scenario" of a SUS (AL1) - Description
Model View "Use case scenario" of a SUS (AL1) - Modelling rules
SysML diagram

SysML model elements

Binding (see chapter 8.2.1)

Model View "Logical Context" of a SUS (AL1) - Description

Model view "Logical Context" of a SUS (AL1) - Modelling rules
SysML diagram

Model elements

Binding (see chapter 8.2.1)

Model view "Functional Partitioning" of a SUS (AL2) - Description
Model view "Functional Partitioning" of a SUS (AL2) - Modelling rules
SysML diagram

Model Elements

Binding (see chapter 8.2.1)

Model view "Functional Architecture" of a SUS (AL2) - Description

Model view "Functional Architecture" of a SUS (AL2) - Modelling rules

SysML diagram
Model elements

Binding (see chapter 8.2.1)

Table of Contents
21
25
26
34
38
40
43
44
47
47
48
48
48
49
49
50
50
51
52
52
53
55
55
56
56
59
74
74
76
76
76
77
77
78
78
79
79
79
81
81
81
82

Modelling Standard
8.3.11
8.3.12

8.3.12.1
8.3.12.2
8.3.12.3
8.4
8.4.1
8.4.2
8.4.2.1
8.4.2.2
8.4.2.3
8.4.3
8.4.4
8.4.4.1
8.4.4.2
8.4.4.3
8.4.5
8.4.6
8.4.6.1
8.4.6.2
8.4.6.3
8.4.7
8.4.8
8.4.8.1
8.4.8.2
8.4.8.3
8.5

8.6
8.6.1
8.6.2
8.6.3
8.6.4
8.6.4.1
8.6.4.2
8.6.4.2.1
8.6.4.2.2
8.6.5
8.6.5.1
8.6.5.2
8.6.6
8.6.6.1
8.6.6.2

© EULYNX Partners

Model view "Technical Functional Architecture" of a SUS (AL2) - Description

Model view "Technical Functional Architecture" of a SUS (AL2) - Modelling rules

SysML diagram

Model elements

Bindings (see chapter 8.2.1)

Model views used to specify EULYNX interfaces

Model view "Logical Context" of a SIUS (AL1) - Description

Model view "Logical Context" of a SIUS (AL1) - Modelling rules
SysML diagram

Model elements

Bindings (see chapter 8.2.1)

Model view "Functional Partitioning" of a SIUS (AL2) - Description
Model view "Functional Partitioning" of a SIUS (AL2) - Modelling rules
SysML diagram

Model elements

Bindings (see chapter 8.2.1)

Model view "Functional Architecture" of a SIUS (AL2) - Description
Model view "Functional Architecture" of a SIUS (AL2) - Modelling rules
SysML diagram

Model elements

Bindings (see chapter 8.2.1)

Model view "Information Flow" of a SIUS (AL2) - Description
Model view "Information Flow" of a SUS - Modelling Rules

SysML diagram

Model elements

Bindings (see chapter 8.2.1)

Model views "Functional Entity" and "Technical Functional Entity" - Description

Model views "Functional Entity" and "Technical Functional Entity" - Modelling rules

SysML Diagram

Block

Model elements - Block properties

Model elements - Block operations

Internal broadcast events

Definition of algorithms for data transformation
Call behaviour

Time advance behaviour

Model elements - Ports

Atomic SysML in ports and out ports

SysML proxy ports to describe a signal-based communication
Model elements - state machines

Region

State

Table of Contents
82
84
84
84
85
85
86
87
87
87
87
87
88
88
88
88
88
89
89
89
89
89
91
91
91
91
92
92
92
93
93
94
94
95
95
95
95
95
97
97
98
98

Modelling Standard
8.6.6.3
8.6.6.4
8.6.6.5
8.6.6.6
8.6.6.7
8.6.6.8
8.6.6.9

8.6.6.9.1
8.6.6.9.2
8.6.6.9.3
8.6.6.9.4
8.6.6.10
8.6.6.10.1
8.6.6.10.2
8.6.6.10.3
8.6.6.11
8.6.6.12
8.6.6.13
8.6.6.14
8.6.6.15
8.6.6.16
8.6.7
8.6.8
8.6.8.1
8.6.8.2
8.6.8.3
8.6.8.4
8.6.8.5
8.6.8.6
8.6.8.7
8.6.8.8
8.6.8.9
8.6.8.10
8.6.8.11
8.6.8.12
8.6.8.13

9

10
10.1
10.2
10.3

© EULYNX Partners

Initial pseudostate and final state
Choice pseudostate

Fork pseudostate

Join pseudostate

Simple state

Transition

Event

Change event

Time event

Internal broadcast event

Signal event

Effect

Event-driven responses using signals
Responses in form of continuous flows
Call behaviour

Composite state

Sequential state

Concurrent state

Decomposition of states using state machine diagrams

Transition firing order in nested state hierarchies

Interaction between state machines
Bindings (see chapter 8.2.1)
Action language
Logical operators
Data types
Declaring variables
Reading the value of a port
Setting the value of a port
Calling an operation
Assigning values to variables
Conditional execution of code
While loops
Case selection
Return statement
Comments

Example program written in ASAL

References

Appendix A - Reference Tool Chain

Windchill Modeler
IBM Rational DOORS
Windchill Integration for IBM Rational DOORS

Table of Contents
100
100
100
100
100
101
102
102
103
104
105
106
106
107
107
107
108
109
110
111
112
112
112
112
113
113
114
114
114
114
114
115
115
115
116
116

116

117
118
118
118

iv

Modelling Standard Table of Contents

10.4 Windchill Requirements Connector 118
10.5 Windchill Modeler SySim 118
10.6 MS Visual Studio 119
10.7 Windchill Modeler Reviewer 119

© EULYNX Partners Y

Modelling Standard

ID Requirement
Eu.ModsSt.1 1 Introduction

Eu.ModSt.2 1.1 Release information

Eu.ModSt.3 [Eu.Doc.30]

Modelling Standard
CENELEC Phase: 4-5
Version: 4.2 (1.A)
Approval date: 02.06.2025

Eu.ModSt. 1177

Version history

Eu.ModSt.7908

version number: 4.0 (0.A)

date: 02.05.2022

author: Randolf Berglehner

review: CCB

changes: CCB comments incorporated. Baseline approved by CCB.

Eu.ModSt.7932

version number: 4.1 (0.A)

date: 08.12.2023

author: Randolf Berglehner

review: M&T

changes: EUMT-61, EUMT-62, EUMT-63, EUMT-64, EUMT-65, EUMT-66, EUMT-70, EUMT-71, EUMT-75, EUMT-76, EUMT-78, EUMT-79, EUP-497

Eu.ModSt.7960

version number: 4.2 (0.A)

date: 05.05.2025

author: Nico Huurman, Philipp Wolber
review: M&T

changes: EUMT-85, EUMT-88

Eu.ModSt.7962

version number: 4.2 (1.A)

date: 20.06.2025

author: Nico Huurman

review: CCB

changes: EUMT-81, EUMT-89, EUMT-90

Eu.ModSt.4 1.2 Impressum
Eu.ModSt.5 Publisher:

EULYNX Initiative

A full list of the EULYNX Partners can be found on https://eulynx.eu/.
Eu.ModSt.7 Responsible for this document:

EULYNX Project Management Office
www.eulynx.eu

Eu.ModSt. 1178

Copyright EULYNX Partners
All information included or disclosed in this document is licensed under the European Union Public Licence EUPL, Version 1.2 or later.

Eu.ModSt.6 1.3 Purpose

Eu.ModSt.49 1.3.1 About this Modelling Standard

Eu.ModSt.50 The goal of this Modelling Standard is to provide a mandatory guideline for Model-based Systems Engineering (MBSE) of digital Command Control and Signalling systems (CCS) in the railway domain.
Eu.ModSt.52 According to MBSE introduced in this Modelling Standard the structure and functionality of digital CCS are specified using the engineering-oriented and standardised Systems Modeling Language (SysML) [1].

Eu.ModSt. 1463

Furthermore, the Systems Modelling Language is embedded in a specification framework compliant to the European standards on functional safety (EN 50126, EN 50128, EN 50129, EN 50159).

Eu.ModSt.53

Based on the notion of a seamless development approach that heavily facilitates reuse, automation and innovation, an advanced and comprehensive modelling theory is used with the MBSE Specification Framework (MBSE SF)
as core component. It enables a stepwise specification of digital CCS in a configurable, extendable, modular and reusable way.

© EULYNX Partners

Page 1 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.1975

The MBSE Specification Framework (MBSE SF) contains, among others, an Architecture Model MBSE (AM MBSE) that facilitates the description of a digital CCS from different viewpoints capturing different

stakeholder concerns and with varying degrees of granularity (different abstraction levels).

Eu.ModSt.54

It should be noted that this document is a ,living document”, i.e. it will evolve over time. The present version reflects the procedures that are currently being applied and evaluated in the EULYNX Initiative. Future versions of the
Modelling Standard will contain the topics left out in this version.

Eu.ModSt.864

Correspondingly, as this standard is based on standard SysML, some example diagrams and pictures obtained from diverse sources, which show enhanced graphical features such as colours, shadows, 3D or embedded pictures,
shall not be considered normative.

Eu.ModSt.7959

It should also be noted that the inserted diagrams are only to be understood as examples for methodological explanation and, although there are similarities to the content of current specifications, are not intended to convey

any specification-specific content. The relevant specifications should be consulted for specification-specific content.

Eu.ModSt.55 1.3.2 Audience

Eu.ModSt.56 The audience targeted by this Modelling Standard comprises engineers being familiar with CCS, modellers creating specification models in this domain, and parties interested in understanding the MBSE approach followed in
EULYNX. Fundamental knowledge about requirements- and systems engineering methodology and the modelling language SysML, as, for example introduced in [24], is recommended.

Eu.ModSt.8 1.4 Terms and abbreviations

Eu.ModSt.9 The terms and abbreviations are listed in the EULYNX Glossary [Eu.Doc.9].

Eu.ModSt.853

The present version of the Modelling Standard contains the abbreviations listed in Chapter 2 of it.

Eu.ModSt.849

1.5 Related documents

Eu.ModSt.850

The current versions of documents related to this document are listed in the EULYNX Documentation plan [Eu.Doc.11].

Eu.ModSt.851

¢ System Engineering Process [Eu.Doc.27]

Eu.ModSt.852

* Interpretation rules for model-based requirements [Eu.Doc.29]

Eu.Modst. 10 2 Abbreviations

Eu.ModSt.1262 Abbr. Abbreviation

Eu.ModSt.11 ASAL Atego Structured Action Language
Eu.ModSt.1254 AL Abstraction level

Eu.ModSt.865 AM Architecture Model

Eu.ModSt. 12 bdd Block definition diagram (SysML)
Eu.ModSt. 13 C Command & Control layer
Eu.ModSt.1974 CCs Command Control and Signalling
Eu.ModSt.14 Cd Command

Eu.ModSt.7848 CD Connection Domain

Eu.ModSt. 15 CENELEC European standards on functional safety (EN 50126, EN 50128, EN 50129, EN 50159)
Eu.ModSt. 16 Con Configuration data

Eu.ModSt.1159 DiaNo Diagram number

Eu.ModSt.866 D Data

Eu.ModSt. 17 D-Port Data port

Eu.ModSt.7879 ESE Environmental Structural Entity

© EULYNX Partners

Page 2 of 119

Modelling Standard

ID Requirement
Eu.ModSt.868 EIL Electronic interlocking
Eu.ModSt.20 F Field layer
Eu.ModSt.7874 FA Functional Architecture
Eu.ModSt. 7875 FE Functional Entity
Eu.ModSt.22 Gen Generic
Eu.ModSt.23 ibd Internal Block Diagram (SysML)
Eu.ModSt. 1976 ILS Interlocking System
Eu.ModSt. 1522 IM Infrastructure Manager
Eu.ModSt.869 ISE Infrastructure Elements
Eu.ModSt.24 LA Logical Architecture
Eu.ModSt.27 LS Light Signal
Eu.ModSt.7876 LSE Logical Structural Entity
Eu.ModSt.28 MBSE Model-based systems engineering
Eu.ModSt.30 MBSE SF MBSE Specification Framework
Eu.ModSt.31 MBSEP MBSE Process
Eu.ModSt.32 Msg Message
Eu.ModSt. 1299 OE Operational Entity
Eu.ModSt.1521 ON Operational Needs
Eu.ModSt.1266 PDI Process Data Interface
Eu.ModSt. 1265 PTC Parametric Technology Corporation
Eu.ModSt.870 RA Risk Analysis and Evaluation
Eu.ModSt.34 RAMS Reliability, Availability, Maintainability, and Safety
Eu.ModSt.1977 RCA Reference CCS Architecture
Eu.ModSt.36 S Safety layer
Eu.ModSt.38 SCI Standard communication interface
Eu.ModSt.1450 SCP Safe Communication Protocol
Eu.ModsSt.887 SIUS System Interface under Specification
Eu.ModSt. 1982 SoS Systems of Systems
Eu.ModSt.7929 SP System Pillar
Eu.ModSt.875 std State diagram (SysML)
Eu.ModSt.1448 stm State machine
Eu.ModSt.37 Sys System
Eu.ModSt.873 SysDef System Definition

© EULYNX Partners

Page 3 of 119

Modelling Standard

ID Requirement
Eu.ModSt.44 SubS Subsystem
Eu.ModSt.874 SUS System under Specification
Eu.ModSt.41 SysML Systems Modeling Language
Eu.ModSt.42 SySim System simulation
Eu.ModSt.876 T Trigger
Eu.ModSt.7898 TFA Technical Functional Architecture
Eu.ModSt.7877 TFE Technical Functional Entity
Eu.ModSt.7878 TSE Technical Structural Entity
Eu.ModSt.43 T-Port Trigger port
Eu.ModSt.877 ucd UseCase diagram
Eu.ModSt.45 UML Unified modeling language
Eu.ModSt.46 VAL Validation
Eu.ModSt.47 VER Verification
Eu.ModSt.48 3 Introduction
Eu.ModSt.76 3.1 Motivation
Eu.ModSt.77 Historically, operators of rail infrastructures were supplied with monolithic systems, based on proprietary interfaces. A few years ago, a re-orientation of the means of production of future systems was initiated. This entails

purchasing modular systems. For example, an interlocking system (ILS) comprises an electronic interlocking (EIL), a command control system and field elements such as points, signals, and so forth. The fundamental concept of
this new approach is having these parts supplied separately [12].

Eu.ModSt.1465

The new approach requires the development of standardised interfaces between the subsystems of a digital CCS such as a digital interlocking system. This will enable the different suppliers to supply compatible modules. This
requires high quality specifications, as suppliers will be working with these blueprints and the operators of rail infrastructures will carry out the system integration tasks.

Eu.ModSt.78

Furthermore, the design of a harmonised railway system with the objective of a broad EU-wide implementation, as striven for in the System Pillar (SP), requires improving specification technigues. Thus, it is an important issue
among infrastructure managers, the railway industry and researchers to find appropriate forms to specify the architectures of complex component systems right up to huge systems of systems (SoS).

Eu.ModSt.1464

Different forms, like natural languages and graphical representations of system requirements, have been used and raised a number of criticisms. On the other hand, formal methods are considered to be one of the correct ways
to specify and verify system requirements. They have been addressed in the railway domain for a number of years. To apply these formal methods, one needs a strong mathematical background.

Eu.ModSt.1978

Thus, following the goal to create high quality specifications understandable also for people without a strong mathematical background, the popular systems modeling language (SysML) [1] is used as specification language in
the MBSE approach introduced in this Modelling Standard.

Eu.ModSt.79

The use of standardised interfaces and highly detailed system specifications creates a need for safety to be part of the specifications. The adoption of MBSE has therefore been part of this transformation, by proving through
modelling and simulation that system specifications meet safety critical requirements.

Eu.ModSt.80

Studies of system developments show that the capture of requirements is one of the most decisive and critical steps in system development. There are many problematic aspects connected to the identification and description of
requirements in software-intensive projects. The following three form the most important aspects as mentioned in [4]:

* requirements are not completely and accurately identified and understood by the application expert;
* requirements are not correctly specified, although completely and accurately identified and understood;
* requirements are correctly specified using informal techniques, that are not properly interpreted and conceived by the system designer or the implementer.

All three problems may lead to a considerably more expensive and time consuming system development.

Eu.ModSt.81

Based on these observations, an engineering-oriented model-based method for the stepwise specification of digital CCS using the Systems Modeling Language (SysML) [1] has been developed to support different professionals,
especially railway engineers, to specify, validate and verify the corresponding system requirements.

© EULYNX Partners

Page 4 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.2010

The model-based requirements definition is used to:

* enable a continuous CENELEC-compatible top-down specification of a (sub)system (refinement of the requirements across different abstraction levels)

* describe the functional requirements of a (sub)system or an interface operationally and therefore suitable for simulation, i.e. testable in a uniform format

* support achieving consistency, non-ambiguity and completeness of the requirements as far as possible

* allow for the testing by simulation of the functional requirements of a (sub)system or an interface already during the specification phase (moving error detection to the specification phase)
* support the generation of (sub)system or interface test cases from the requirements specification

Eu.ModSt.2012

The system requirements are described in a consistent, non-ambiguous and compact form using the standardised semiformal language SysML. It should be noted that the SysML model elements and their interaction are to be
understood as a means of describing the system requirements and not as implementation specifications. They are to be implemented with regard to their semantics.

Eu.ModSt.7899

The type of representation and the underlying methodology sometimes differs from common text-based specifications. However, the requirements can be further processed into functional specifications and products in
accordance with the tested processes.

Eu.ModSt.65 3.2 Structure of the Modelling Standard
Eu.ModSt.66 The Modelling Standard is structured as depicted in Figure 67.
Eu.Modst.67
Figure 67 Structure of the Modelling Standard
Chapter 1 Chapter 5
Miscellaneous .
/1_Modelling Language
Chapter 2
Abbreviations ,"’ 2 Chapter 6 Appendix A
;oo Ref Tool Chai
Chapter 3 Tools eference Tool Chain
Introduction Va4
. Chapter 7
Chapter 4 P e User Requirements
MBSE Specification Framework RS
g Chapter 8
Chapter 9 Architecture Model MBSE
References
Eu.ModSt.68 The main contents of the Modelling Standard are covered in Chapters 3 - 10.
Eu.ModSt.69 In Chapter 3, an introduction to the Modelling Standard is given.
Eu.ModSt.71 In Chapter 4, an introduction to the structure of the MBSE Specification Framework (MBSE SF) is given. The MBSE SF is the basis for the development of a stepwise model-based specification of all the design decisions that are
made during the different needed engineering activities.
Eu.ModSt.72 In Chapter 5, the modelling language being used is introduced.

Eu.ModSt.7928

In Chapter 6, the requirements for supporting tools necessary to implement the EULYNX MBSE process are outlined. To complement this, the tool chain currently used in EULYNX is described in Appendix A. 1t fully supports
the EULYNX MBSE process and serves as a reference for the use of alternative tool chains.

Eu.ModSt.73

In Chapter 7, the area ,User Requirements" of the MBSE SF is described.

Eu.ModSt.74

In Chapter 8, the Architecture Model MBSE (AM MBSE) is introduced and the constituent model views are described. The characteristics of the EULYNX subsystems are highlighted and the principles of model-based
requirements definition are explained. Furthermore, the MBSE process is presented in a simplified way. The main part of the chapter is dedicated to the description of the model views and the corresponding modelling rules:
8.1 Overview of the EULYNX MBSE methodology

8.1.1 Characteristics of EULYNX subsystems

8.1.2 Principle of model-based definition of requirements

© EULYNX Partners

Page 5 of 119

Modelling Standard

ID

Requirement

8.1.3 Overview introduction to the EULYNX MBSE Process

8.2 Model views - General modelling rules

8.2.1 Binding of requirements

8.2.2 Modelling Pattern for interlocking systems

8.2.3 Introduction to basic structural model elements

8.2.4 Interface centric specification

8.3 Model views used to specify EULYNX subsystems

8.4 Model views used to specify EULYNX interfaces

8.5 Model views "Functional Entity" and "Technical Functional Entity" - Description
8.6 Model views "Functional Entity" and "Technical Functional Entity" - Modelling rules

Eu.ModSt.70

In Chapter 9, the references are listed.

Eu.ModSt.7933

Appendix A (chapter 10) describes a reference tool chain that enables the implementation of the EULYNX process.

Eu.ModSt.236

4 MBSE Specification Framework

Eu.ModSt.1492

Today's and, even more so, the future development of CCS systems in the railway domain faces a variety of challenges. Key success factors to meeting these challanges are suitable architecture description concepts for
abstraction and structure CCS architectures at different levels of granularity. The result of these concepts is a seamless development approach that heavily facilitates reuse and automation. As stated in [25], a basic requirement
for such a seamless approach is a clear notion of a system that is formalised by a comprehensive modelling theory. According to this modelling theory, a modelling framework has to provide appropriate models and description
techniques for modelling the different aspects and artefacts of system development.

Eu.ModSt.237

Inspired by [25] and [26], this Modelling Standard introduces the MBSE Specification Framework (MBSE SF) in order to meet those aforementioned challenges. Focusing on system requirements specification and interface
requirements specification tasks to be carried out at the infrastructure manager side, it facilitates the seamless model-based specification of

¢ EULYNX subsystems under Specification (SUS) or

* EULYNX adjacent System interfaces and subsystem Interfaces under Specification (SIUS)
as well as the verification and validation of the resulting specification artefacts.

Eu.ModSt.1493

The MBSE SF consists of five areas (see Figure 238), namely
¢ User Requirements,
* System Requirements,
* Domain Knowledge,
* MBSE Process and
* Modelling Language and Tools.

Eu.ModSt.1494

Guided by a MBSE process and based on Domain Knowledge, these areas strictly distinguish between the problem domain (User Requirements) and the solution domain (System Requirements).

© EULYNX Partners

Page 6 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.238

Figure 238 MBSE Specification Framework

MBSE Specification Framework (MBSE SF)

User System Domain MBSE
Requirements Requirements Knowledge | Process
Architecture Model
_speclly MBSE (AM MBSE) 6
DT “Tase™ >
validate
2*):%[@____ I
Specification model

Modelling Language and Tools

and correctly.

© Verify (proof) the fulfillment of user requirements.

® @ Use Domain Knowledge and MBSE Process as basis for
specification, verification and validation tasks.

© Specify the system model based on design decisions derived from
user requirements and elicit new user requirements from it.
@ Refine or decompose the system model (increasing granularity).

© Verify the consistent refinement or decomposition of the system model.
O validate that stakeholder intentions are reflected completely

Eu.ModSt.239

User Requirements

The area "User Requirements" contains the model of the problem domain (problem definition) in the form of user requirements (see Fig. 1484). User requirements allow the different stakeholders to explicitly state what is
expected from the future system. They are the main source for the derivation of design decisions as basis for the creation of the artefacts of an abstract system solution (system model), which itself may be again the source for
the elicitation of new (possibly more granular) user requirements.

Eu.ModSt.245

It has to be verified that the design decisions derived from the user requirements are incorporated in the system model completely and correctly. In other words, it has to be proved that the system model fulfils all defined user

requirements.

Eu.ModSt. 1468

Furthermore, user requirements are among others (e.g. domain knowledge), the source for the validating that the system model reflects the stakeholder intentions completely and correctly.

Eu.ModSt. 1486

The area "User Requirements" is described in more detail in chapter 7.

Eu.ModSt.240

System Requirements

The area "System Requirements" contains the model of the solution domain in the form of a system model representing an abstract solution of the system (see Figure 1484). There, the design decisions derived from the user
requirements are documented (specified) traceable with varying degrees of granularity (different abstraction levels) based on the Architecture Model MBSE (AM MBSE). Each abstraction level represents design decisions about
the refined or decomposed implementation of its predecessor (refine dependency).

Eu.ModSt.244

The correct, complete and consistent refinement or decomposition has to be approved in verification steps (verify dependency).

© EULYNX Partners

Page 7 of 119

Modelling Standard

ID Requirement

Eu.ModSt. 1487 The Architecture Model MBSE is described in more detail in chapter 8.

Eu.ModSt.243 Domain Knowledge

The Domain Knowledge model comprises the available knowledge of the problem domain, similar to a project glossary. It hence makes up part of the context of knowledge of the system and can be used to mitigate
misinterpretation, to reduce ambiguity, and to provide a possibility for early verification and validation of the system model [25].

Eu.ModSt.1488 The domain knowledge relevant for EULYNX is defined in [Eu.Doc.9] EULYNX Glossary and [Eu.Doc.10] EULYNX Domain Knowledge. The documents are available on the EULYNX website [31].

Eu.ModSt.242 MBSE Process

The relationships between artifacts of the system model are specified by relations. Such a relation can be expressed by a process activity that defines a general technique for artefact creation and analysis. In the MBSE Process,
multiple of these process activities are combined to a sequence. The output of one process activity can be input of another process activity. Furthermore, one process activity's postcondition might ensure that another process
activity's precondition is met.

Eu.ModSt.1489 The EULYNX MBSE process is described in principle in chapter 8.1. A detailed description of the process steps will be given in a separate document in the future. The EULYNX System Engineering process is currently documented
in [Eu.Doc.27] and the procedure for verification and validation of the specification models in the EULYNX verification and validation plan [Eu.Doc.31]. The documents are available on the EULYNX website [31].

Eu.ModSt. 1467 Modelling Language and Tools
The suggested modelling language and the requirements for supporting tools necessary to implement the EULYNX MBSE process. are introduced in chapter 5and chapter 6 respectively.

Eu.ModSt. 1484
Figure 1484 Problem definition and abstract solution in the MBSE SF

Problem and solution

Abstract
solution

What the
system does

How th Specific
ow the syste z
is constructed solution

ABSE Specification Framework (MBSE SF)

Domain MBSE
Knowledge | Process

Specification model
Modelling Language and Tools

© EULYNX Partners Page 8 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.246

5 Modelling Language

Eu.ModSt.247

5.1 Systems Modeling Language (SysML)

Eu.ModSt.248

The Systems Modeling Language [1] is used with the objective to document requirements and to specify artefacts in a standardised, correct, complete and consistent way within the framework of the MBSE specification
structure, as outlined above.

Eu.ModSt.249

SysML is a standardised modeling language dedicated to systems engineering applications. It is a UML profile that not only reuses a subset of UML 2.5 [2], but also provides additional extensions to better satisfy Systems
Engineering's specific needs. It is intended to help to specify and design complex systems and their subsystems and enable their analysis, verification and validation. These systems may consist of heterogeneous components
such as hardware, software, information, processes, personal and facilities [1].

Eu.ModSt.250

Nine SysML diagrams (see Fig.251) define a concrete syntax that describes how SysML concepts are visualized graphically or textually. Each diagram represents a specific view of the model of the SUS or SIUS. In the SysML
specification [1], this notation is described in tables that show the mapping of the language concepts into graphical symbols on diagrams. Diagrams used in this Modelling Standard will be outlined in the following chapters. For a
detailed description, however, the SysML specification [1] shall be referred to.

Eu.ModSt.251

Figure 251 SysML diagram taxonomy [1]

CLD 5ysML Diagram T esJ
L g L SysML Diagrams I

| Structural Diagrams ' Requirement Diagram . | Behavioral Diagrams I

_ i Package Diagram ' Use Case Diagram I
Block Definition Diagram I State Machine Diagram I
Internal Block Diagram I Activity Diagram I

Parametric Diagram I | Sequence Diagram I

Eu.ModSt.252

5.2 Action Language

Eu.ModSt.253

The specification approach described in this modeling standard follows the objective of creating executable specification models. In order to specify the necessary executable behaviours in SysML, such as block operations or
transition effects on state machines the Atego Structured Action Language (ASAL) is used.

Eu.ModSt.254

ASAL is an UML Action Language suitable for specifying executable algorithms in a target language independent way. It is used to specify the Event Action Blocks in SysML models that use state machine diagrams describing the
stimulus-response behaviour of a SUS or a SIUS.

© EULYNX Partners

Page 9 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.255

Furthermore, ASAL is used to describe the transformational aspects of a SUS or SIUS (data flow). The logical structure of the input and output data, and the algorithm that computes the transformation are specified in the body
of corresponding block operations.

Eu.ModSt.256

A description of ASAL is provided in chapter 8.6.8 (see also [13]).

Eu.ModSt.7697

5.2.1 The role of data types

Eu.ModSt.161

According to the specification approach described in this Modelling Standard, a data type is a classification based on identification of one of the various types of data (e.g. the type of a message sent along a SUS interface). The
data type such as Boolean, Integer or String restrict the possible values corresponding to that type, the meaning of data, the way values of that type can be stored and how a state machine receiving such data reacts.

Eu.ModSt.162

A data type may be refined in the tradition of data refinement [4]. We may, for example, type a message in the specification model as string, and after implementation level design of the SUS or SIUS instead of sending strings,
bits are sent. Thus, a data type used in the specification model may be refined and an implementation-oriented data type may be used by the supplier of the SUS or SIUS. However, it must be ensured that the new data type
complies with its predecessor (verification of the refinement).

Eu.ModSt.301

6 Tools

Eu.ModSt.7912

The EULYNX MBSE process shall be supported by a toolchain that enables the creation of SysML specification models, their static checking for completeness, correctness and consistency and the simulation-based validation of the
models. It should be noted here that the creation of the executable models (virtual prototypes) can take place directly, i.e. without the need for the intermediate step of a model transformation.

Eu.ModSt.7913

Furthermore, the application of formal methods must be made possible (e.g. formal proof of safety properties, model checking, etc.).

Eu.ModSt.7914

The modelling tool shall provide a link to a requirements management tool that allows the representation of specification model elements in the form of atomic requirements. These must be able to be transformed into the
standardised Requirements Interchange Format (ReqIF) and exchanged with suppliers.

Eu.ModSt.7915

The tool chain currently used in EULYNX is shown serving as a reference for the use of alternative tool chains in Appendix A - Reference tool chain.

Eu.ModSt.312

7 User Requirements

Eu.ModSt.313

7.1 Overview

Eu.ModSt.107

As many standards such as the EN 50126 [17] do not distinguish between a user requirements and system requirements definition phase, this has to be clarified in order to meet the objective of this Modelling Standard. The
MBSE Specification Framework introduced in chapter 4 takes account of this providing a structure to explicitly define user requirements separated from system requirements.

Eu.ModSt.314

As already stated, user requirements are depicted in the area ,User Requirements" of the MBSE SF and describe the problem domain (problem definition). They allow the stakeholders (users) to explicitly state what is expected
from the SUS/SIUS. They should define the results wanted by the stakeholders i.e. what the stakeholders want to be able to do with the SUS/SIUS and the expected quality. However, they should not make any comments or
statements about how the SUS/SIUS is to be created or provided.

Eu.ModSt.108

User requirements define the results that the users want, irrespective of any functional breakdown (see Figure 112). They must be separate from system requirements and must be defined first.

Eu.ModSt.110

The system requirements must solve the problem of the user, i.e. they must satisfy the user requirements. This has to be approved by means of validation.

Eu.ModSt.112

Figure 112 Differentiating user and system requirements

User requirements System requirements

A description of the problem

Results that operational users want from
the system

Do not constrain the solution
Quality of those results
Owned by users or their representatives

An abstract representation of the solution
What the system does

_ * Do not unnecessarily constrain the design
é"m‘% How well it does it

Owned by systems engineers

[“The user shall be able to ... "] [“The system shall do...”

Eu.ModSt. 1485

The task of defining user requirements encompasses the whole MBSE Process. They are the main source for the creation of the model of an abstract system solution which represents the system requirements.

© EULYNX Partners

Page 10 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.316

User requirements should be stated by (or on behalf of) the stakeholders for whom the SUS/SIUS is being developed. Even if the stakeholders do not actually write the user requirements, they should review and when they are
happy "endorse" them, and hence take an "ownership" of them.

Eu.ModSt.1473

User requirements may be divided into different classes such as operational requirements, architectural requirements, technical constraints, quality requirements, safety requirements and so on. Safety requirements are an
important class of user requirements and thus shortly introduced in chapter 7.2. As the main focus of this Modelling Standard is not the elicitation of user requirements, the other different types are not further described.

Eu.ModSt.1474

7.2 Safety requirements

Eu.ModSt.1475

Safety requirements, also referred to as safety goals, state safety invariants, i.e. conditions that could lead to hazardous situations if they are not met. They can be split into the following two categories [9]:
- Safety invariants: What may not happen under any circumstances,
- Safety overrides: Who may do what under which circumstances.

Eu.ModSt.1476

The origin or approach for defining safety requirements can vary. In this section, characteristics of three different methods [26] to create safety requirements are outlined.

Eu.ModSt.1478

Ad-hoc elicitation
The first it is referred to as ad-hoc. Such requirements are specific to a particular system and are based on the design principles for that system. One such requirement for a relay-based interlocking may state that “Front coil of
relay L may have current only if relay Ljg has dropped”.

Eu.ModSt.1481

Regulations-based elicitation
The second is referred to as regulations-based. Requirements are based on safety standards, e.g. based on formalising requirements in applicable rules and regulations. One such requirement for an interlocking may state
that “a main signal may clear only if there is an established flank protection”, together with appropriate definitions of what "clear" means and what the requirements on flank protection means.

Eu.ModSt.1480

Hazard-based elicitation

The third is referred to as hazard-based. Requirements are based on making an analysis (hazard analysis) of the different types of possible hazards (e.g. frontal collision of trains, derailment and so on) and for each possible
hazard, require that it is impossible. Essentially, the purpose of hazard analyses is to identify operational conditions of the SUS's functionality that could lead to harm. The main outputs of such an analysis are hazards and safety
goals (i.e. safety requirements).

Eu.ModSt. 1482

Safety requirements should be documented separately from other user requirements and incorporated into the system s requirements artefacts. The complete and correct incorporation of the safety requirements has to be
assured using verification methods such as simulation-based falsification methods or formal verification methods [25].

Eu.ModSt.1490

Simulation-based falsification methods can work directly on simulation models such as executable SysML state machines. In general, given a safety requirement in some form of logic, these methods leverage mathematical
methods, trying to falsify the requirement. This means that the algorithms are geared towards identifying the "worst possible" simulation run with respect to the given requirement. If the method succeeds in producing a run
which violates the requirement, it is falsified and the counterexample can be used to refine either the requirement or the simulation model. If it does not, no formal guarantees about the fulfillment of the requirement can be
made.

Eu.ModSt.1491

In contrast, formal verification methods aim to provide formal proof of the correctness of the requirement for the given model of the SUS/SIUS. Because this proof cannot be provided by simulation alone, a strictly formal
model is required.

Eu.ModSt.317

7.3 Formulation of user requirements

Eu.ModSt.318

This Modelling Standard does not have the intention to impose obligations how user requirements have to be formulated, but suggests a formulation as textual requirements according to the SysML specification [1].

Eu.ModSt.319

SysML introduces the requirement diagram which provides the means to depict requirements and to relate them to other specification, design or verification models. The requirements can be represented in graphical, tabular, or
tree structure formats.

Eu.ModSt.320

The strength and usefulness of a requirement diagram consists in the fact that it allows to easily understand the relations between the requirements and other model elements. The semantics of these relationships and other
diagram elements are explained in [1].

Eu.ModSt.321

A requirement can be decomposed into sub-requirements in order to organize multiple requirements as a tree of compound requirements. Moreover, a requirement can be related to other requirements as well as to other
elements, such as analysis, implementation, and testing elements (see Figure 323).

Eu.ModSt.322

Therefore, a requirement can be generated or extracted from another requirement by using the derive relationship. Furthermore, requirements can be fulfilled by certain model elements using the satisfy relationship. The verify
relationship is used to verify a requirement by applying different test cases.

Eu.ModSt.1479

User requirements (especially safety requirements) should be verifiable, so that it is possible to distinguish a system model satisfying the user requirements from one that does not do. Typical reasons for user requirements not
being verifiable include:

- The user requirement is incomplete.

- The user requirement is poorly written.

- The user requirement is not described at the level it will be verified.

© EULYNX Partners

Page 11 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.323

Figure 323 Requirement diagram example [1]

req [package] HSUVRequrements [A ition Requirement Refinement and Venfication

-

Fequirement
Acceleration
¥

HSLUY LU sel ases:

:Accelerate

Power

¥iax Acceleration

PowerSubsyvstem

Eu.ModSt.332

8 Architecture Model MBSE

Eu.ModSt.330

The design decisions derived from the user requirements are documented traceable in the area "Architecture Model MBSE" of the SF MBSE in the form of a model of the abstract solution of a SUS or a SIUS.

Eu.ModSt.335

Focusing on specification tasks to be carried out at infrastructure manager (IM) side, the Architecture Model MBSE (see Figure 340) facilitates the description of a SUS or a SIUS from different viewpoints capturing different
stakeholder concerns and with varying degrees of granularity (different abstraction levels).

Eu.ModSt.1516

Viewpoint
A viewpoint is a specification of the conventions for constructing and using a view. Viewpoints comprise patterns or templates from which to develop individual views by establishing the purpose and audience for a view and the
techniques for its creation and analysis (based on [29]).

Eu.ModSt.342

Abstraction level

An abstraction level defines a specific level of abstraction and granularity at which the SUS/SIUS is examined. The level of granularity of the respective abstraction level is in turn determined by a structural characteristic that
stems from the layer above. Initially we consider the SUS/SIUS as a whole [25]. In other words, an abstraction level describes the whole of a SUS/SIUS under a certain degree of abstraction, i.e. it represents the amount of
complexity by which a SUS/SIUS is viewed. The higher the level, the less detail. Any abstraction level contains several appropriate views.

Eu.ModSt.1561

To change the degree of granularity for a given view to a higher degree, a low degree view is refined into a number of more detailed SUS/SIUS views following the principle of divide and conquer. This step can basically be
performed from any viewpoint.

Eu.ModSt.357

Refinement
Refinement refers to the process of detailing an analysis or design element while preserving its semantics [25]. The degree of abstraction decreases from top to bottom, i.e. the lower the degree of abstraction the higher the
degree of refinement of corresponding views.

Eu.ModSt.358

The EULYNX MBSE methodology is based on two basic refinement relations, namely, behavioural and interface refinement. These relations are described as follows [4].

Eu.ModSt.360

Behavioural refinement
Behavioural refinement relates to specifications of the same syntactic interface. The refined (more precise) specification may impose further functional and non-functional requirements in addition to those imposed by the given
(more abstract) specification.

Eu.ModSt.362

Interface refinement
Interface refinement relates to specifications of different syntactic interfaces. The refined specification is a ,behavioural refinement" of the given specification with respect to a translation of its input/output histories. For example,
interface refinement allows to replace a message by several messages, and vice versa or instead of transmitting natural numbers, bits may be sent (data refinement).

Eu.ModSt.1520

Decomposition
In contrast to refinement, decomposition denotes the partitioning of an analysis element or design element, or a logical/technical component into parts [25].

Eu.ModSt.336

View
A view is a representation of a whole SUS/SIUS from the perspective of a related set of concerns (based on [29]. In other words, a SUS/SIUS description from a specific viewpoint and with a specific degree of granularity is

called a view [25]. Within the scope of this Modelling Standard, a view is synonymously referred to as "view", "model view" or "system view".

© EULYNX Partners

Page 12 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.1336

Engineering path
As illustrated in Figure 340 the development of views for a SUS or SIUS with a specific degree of granularity is summarised in an engineering path.

Eu.ModSt.334

The AM MBSE facilitates the seamless, model based specification of digital CCS in the railway domain with three core IM-related viewpoints namely
* Functional Viewpoint,
* Logical Viewpoint and
* Technical Viewpoint.

Eu.ModSt.331

The viewpoints describe a SUS or a SIUS with respect to different concerns. However, these descriptions may vary in their degree of granularity. For complex SUS/SIUS in particular, it is reasonable to start with rather high-level
descriptions. Once these high-level descriptions have been created, these views are typically refined and detailed step by step. Therefore, the AM MBSE supports views with different degrees of granularity i.e. views at different
abstraction levels.

Eu.ModSt.333

Following EN 50126 [17] the AM MBSE consists of three core IM-related abstraction levels (AL) namely
AL1: Subsystem/Interface Definition,
AL2: Subsystem/Interface Requirements and
AL3: Apportionment of Subsystem/Interface Requirements.

Eu.ModSt.3561

The AM MBSE can also be applied to specify an overall system, which is not the case in EULYNX at the moment. In this case, the abstraction levels are named as follows:
AL1: System Definition,
AL2: System Requirements and
AL3: Apportionment of System Requirements.

Eu.ModSt.1526

Each of the IM-related core AL may again be decomposed in further AL such as AL1.1, AL1.2 and so on as appropriate. Any AL represents design decisions about the refined or decomposed implementation of its predecessor and
the specification of the outcome of this decisions by means of appropriate views.

Eu.ModSt.1525

Crosscutting system properties (CSP)
One of the principles of the AM MBSE is the continuous engineering of crosscutting system properties. This principle aims at establishing the ability to consider crosscutting properties of the SUS/SIUS. Typical crosscutting
properties are RAMS [17], security and real-time properties of the SUS/SIUS: they must be considered in any engineering activity and the corresponding artefacts [25].

Eu.ModSt.337

Safety, for example, typically defined as freedom from unacceptable risk (of harm), affects almost all process steps in a development lifecycle. For this reason, safety is not represented in a single viewpoint but as a quality
aspect of the AM MBSE that has a crosscutting influence and is integrated into several viewpoints.

Eu.ModSt.1242

The growing complexity of safety-critical railway systems is leading to increased complexity in safety analysis models. It is therefore not appropriate to develop functionality and consider safety in separate tasks. Safety aspects
have to be integrated as tightly as possible into the development process and its models [25].

© EULYNX Partners

Page 13 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.340

Figure 340 Architecture Model MBSE

Architecture Model MBSE (AM MBSE)
Vi int Logical Viewpoint | Technical Viewpoint |CSP

| ﬂl - -
AL1 ® ", -
______ *., -

= g
:
AL2 % = 1 R - E o
] = e S | = o c
w 4 v R R E
&

AL3

System/Model views _ |
p CNngineering patn

Abstraction Levels (AL):

AL1: Subsystem/Interface Definitionovvevvereerernerenrenrennennean.? EN 50126 Phase 2
AL2: Subsystem/Interface Requirementsccocevevvvairnnrnnrnnne=® EN 50126 Phase 4
AL3: Apportionment of Subsystem/Interface Requirements> EN 50126 Phase 5

CSP: Crosscutting Subsystem/Interfface Properties

Eu.ModSt.879

8.1 Overview of the EULYNX MBSE methodology

Eu.ModSt.2110

The EULYNX initiative is aiming at specifying EULYNX subsystems and standardising their interfaces (SCI, SMI, SDI) and the interfaces between adjacent systems.

Eu.ModSt. 1663

This chapter provides an overview of the used MBSE methodology. The EULYNX MBSE methodology assumes that a definition of the EULYNX architecture is known. Thus, it is currently not designed to describe system
architectures but black-box specification models of EULYNX subsystems, their standardised interfaces and standardised interfaces between adjacent systems.

Eu.ModSt.7012

8.1.1 Characteristics of EULYNX subsystems

Eu.ModSt.7014

Command control and signalling (CCS) systems such as EULYNX subsystems are reactive control systems [32] and most of them safety-critical [11]. They are characterized by the constant interaction and synchronisation
between the system and its environment.

Eu.ModSt.88

The terms "system" and "reactive system" shall be explained first.

Eu.ModSt.7702

8.1.1.1 System

Eu.ModSt.84

A system is a technical or a sociological structure consisting of a group of entities combined to form a whole that can work, function, or move interdependently and harmoniously. A system may consist of various system
elements called subsystems, that can be understood as systems on their own. Systems are thus hierarchically divided into subsystems [4]. Since the single system is, in turn, a part of a larger system, one may speak of an
embedded system [5].

© EULYNX Partners

Page 14 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.86

EULYNX follows the objective of structuring the EULYNX overall CCS system hierarchically into subsystems in a way, that the resulting subsystems, referred to as modules, can be supplied by different suppliers and then
integrated independent of a particular vendor [12]. As far as the specification of those modules, such as a Subsystem Light Signal, a Subsystem Point, a Subsystem LX and so on is concerned, they are fitted with standardised
interfaces and seen as black boxes without any further decomposition.

Eu.ModSt.7059

8.1.1.2 Reactive system

Eu.ModSt.1496

A reactive system is a system that, when switched on, is able to create desired effects in its environment by enabling, enforcing, or preventing events in the environment.

Eu.ModSt.89

Following the deterministic paradigm which is a key requirement for a safety-critical railway system, in contrast to non-deterministic systems, the same sequence of system inputs always produces the same sequence of system
outputs.

Eu.ModSt.1497

Safety is a major quality of safety-critical railway systems that must be considered in any activity during engineering. Safety can be characterized as the extent to which the SUS will not have effects on its environment that result
in harm to people, significant monetary losses, or any other negative impacts to its environment [25].

Eu.ModSt.90 Reactive systems have a number of characteristics [8]:
* The system is in continuous interaction with its environment.
» The process by which the reactive system interacts with its environment is usually nonterminating. If a reactive system terminates during its availability time, this is usually considered a failure.
« In its interaction with the environment, the system will respond to external stimuli as and when they occur. The system must therefore be able to respond to interrupts, even if it is doing something else.
* The response of a reactive system depends on its current state and the external event that it responds to. The response may leave the system in a different state than it was before.
* The response consists of enabling, enforcing, or preventing interaction with its environment.
* The behaviour of a reactive system often consists of a number of interacting processes that operate in parallel.
* Often a reactive system must operate in real time and under stringent time requirements.
Eu.ModSt.91 Although reactive systems may provide manifold functionality, they all engage in stimulus-response behaviour. Thus, for the specification of a reactive system appropriate techniques are needed for specifying stimulus-response

behaviour.

Eu.ModSt.1499

For the specification of the stimulus-response behaviour of a safety-critical railway system such as an interlocking system that may be described by discret states, finite state machines such as SysML state machines may be
used.

Eu.ModSt.1498

Similar to the characteristics of reactive systems are the characteristics of interactive systems. While for reactive systems the stimulus-response behaviour is determined by the physical-technical environment, the stimulus-
response behaviour of interactive systems is determined by the system.

Eu.ModSt.93

Reactive systems or interactive systems can be contrasted with transformational systems [8], which exist to transform an input into an output. A diagnostic expert system, for example, is a transformational system; it may enter
an interactive dialogue to acquire all relevant data about a malfunctioning system, but when all data is provided, the expert system will produce its diagnosis as output and terminates.

Eu.ModSt.7015

Since a EULYNX subsystem also has the characteristic of a control system, this term shall be explained next.

Eu.ModSt.7016

8.1.1.3 Control system

Eu.ModSt.7017

To control means to regulate or direct. Hence a control system is an arrangement of physical components connected in such a manner to direct or regulate itself or another system.

Eu.ModSt.7018

If a lamp is switched ON or OFF using a switch, according to the example shown in chapter 8.1.3, the entire system can be called a control system. In short, a control system is in the broadest sense, an interconnection of
physical components to provide the desired function, involving controlling action in it.

Eu.ModSt.7019

For each control system, there is an input and an output. The input is the stimulus, excitation, or reference value applied to a control system to produce, depending on its internal state, a specific response and the output is the
actual response obtained from the control system. The specification of a control system can thus basically be done in stimulus-response form.

Eu.ModSt.7020

8.1.1.4 Typical control loop of a EULYNX subsystem

Eu.ModSt.7021

Figure 7022 shows a typical control loop of a CCS system such as a EULYNX subsystem. The "Plant" is the system being controlled such as the point in the environment of the control system consisting of point controller and
point machine (see Figure 7051).

© EULYNX Partners

Page 15 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.7051

Figure 7051 Example of a plant

Point Controller
(Subsystem Point)

FDur—wire} 4 Actuator

interface
- L ‘;/ﬂ E"j]
[Point
— Machme

|

Position Senaor .

[4] g

Drive rod

{17 Slide rod

Plant

1[—‘L1_

Point I:Iade Im:k

—_— -

[][Z

Steering rack

< Point blades =

.

Point

Eu.ModSt.7023

Most core control system functions can be assigned to one of the four categories listed below:

¢ Control: the purpose of a control function is to transform information about a needed change of the plant’s state into instructions or commands for the state of the actuators. Control functions are where all the decisions

are made.

¢ Actuate: the purpose of an actuate function is to transform instructions or commands into a physical state that has some effect on the plant’s internal state.
» Sense: the purpose of a sense function is to transform a physical external state of the plant into information about the plant’s external state.

* Observe: the purpose of an observe function is to transform information about the plant’s external state into an observation about the plant’s internal state. Observe functions are where inferences are made about the

state of the plant given incoming data.

Eu.ModSt.7024

Basically, only what can be observed can be controlled. This is not the same as saying that only what can be sensed can be controlled. Sensed data can be used to estimate an internal state that shall be controlled, but an
internal state cannot be directly sensed. Only the external states of the plant can be sensed.

Eu.ModSt.7025

The point state (LEFT, RIGHT or TRANSITION) of a railroad turnout, for example, is an internal state. It can be inferred by sensing the current flow via the point machine position sensor contacts. From these sensed current flow,
we can infer the internal state that is the point state of the turnout.

Eu.ModSt.7026

Figure 7022 shows the flow of information between the functions [(2), (5), (6)] within the control system and between them and an external reference (1) and the “Plant” [(3), (4)] using a railroad turnout as an example. The

information flows (4), (5) and (6) correspond to the “feedback” of a closed loop control system as described in [32]. The information flows are described below:

(1) Required internal state of "Plant”: e.g. required point state “LEFT”,

(2) Required external state of “Plant”: e.g. connected voltage for moving the point machine to the left (four-wire interface),

(3) Actual external input state of plant: e.g. movement of the point machine drive rod to bring the point into the left position,

(4) Actual external output state of plant: e.g. switching position of the point machine position sensor contacts depending on the point machine drive rod position,
(5) Sensed external output state of plant: e.g. current flow via the point machine position sensor contacts (four-wire interface),

(6) Estimated internal state of plant: e.g. estimated point state "RIGHT” or “TRANSITION.

© EULYNX Partners

Page 16 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.7022

Figure 7022 Typical control loop of a EULYNX subsystem

m (2) (3)

Plant
(4)

Eu.ModSt.7052

8.1.1.5 Interpretation of the concept of "Function”

Eu.ModsSt.201

According to the EULYNX MBSE approach, use cases form the basis for the functions to be provided by a SUS at the highest level of abstraction, i.e. at abstraction level AL1 of the AM MBSE. They describe the functionality of a
SUS in terms of how it is used to achieve the goals of its various users (see chapter 8.1.2.2.3). In other words, use cases create desired effects in the SUS environment.

Eu.ModSt.7699

In contrast to a use case, a function is the ability of a SUS to create a desired effect in the system environment. So all use cases of a SUS are functions and each function realises one or more UseCases [8].

Eu.ModSt.7053

At abstraction level AL2 of the AM MBSE, a function is represented by a Functional Entity (FE) or a Technical Functional Entity (TFE). Both encapsulate subsets of functional requirements of EULYNX SUSs or SIUSs in the form of
function modules. They delimit the function modules from their environments and define the inputs and outputs.

Eu.ModSt.7058

While FEs define technology-independent functional requirements derived from corresponding use cases defined on abstraction level AL1, TFEs describe technology-dependent ones.

Eu.ModSt.7056

FEs and TFEs have SysML state machines and SysML block operations to describe behaviour. SysML state machines enable the specification of finite discrete event dynamic behaviour. SysML block operations are used to perform
logical or algebraic transformations. The corresponding algorithms are defined in the operation bodies using the action language ASAL. Block operations are currently used as call operations. This means that they have a finite
execution cycle (they are called, for example during state transitions, executed, and return a value).

Eu.ModSt.7057

The EULYNX specification approach allows the description of functional control system architectures and their governing control loops through the "Functional Architecture" and "Technical Functional Architecture" model views of
AM MBSE. As exemplified in Figure 7055, the functions of a control system are represented by interconnected FEs or TFEs.

Eu.ModSt.7321

Please note: FEs and TFEs are used for the structured description of a SUS or SIUS and are not in themselves architectural specifications for the manufacturer. In other words, a manufacturer does not have to prove that it
implements a particular FE or TFE. Proof is only required for the overall behaviour defined by the interconnected FEs or TFEs in a functional or technical functional architecture.

© EULYNX Partners

Page 17 of 119

Modelling Standard

ID Requirement
Eu.ModSt.7055
Figure 7055 FE and TFE in a Technical Functional Architecture
Technical Functional Architecture
|_ P LS TS U
Functional Entity (FE) -

L ey ;"‘:.:‘-:
L m'"“"'::;’—
s

-"-h_u-_-a-r
“‘M‘w._", e —

e Pt
(R S .

Technlcal Funchonal Entity (TFE) |

Eu.ModSt.2041

8.1.2 Principle of model-based definition of requirements

Eu.ModSt.2061

8.1.2.1 Applied description methods for model-based requirements

Eu.ModSt.2044

To best support the verification and validation effort of specified SUS/SIUS requirements and to keep the specification understandable for engineers, the EULYNX specification approach aims to describe the functional SUS/SIUS
requirements in the form of operational specifications.

Eu.ModSt.2047

As mentioned above, the CCS systems currently specified in EULYNX are reactive control systems and characterised by the constant interaction and synchronisation between the system and its environment.

Eu.ModSt.2048

A reactive control system, when switched on, engages in stimulus-response-behaviour in order to create desirable effects in its environment. For that reason, the EULYNX methodology proposes the specification of the functional
system requirements in stimulus-response form.

Eu.ModSt.2042

As the focus of EULYNX is on the specification of interfaces, the behaviours of EULYNX systems are specified using an interface centric approach.

Eu.ModSt.2111

In the following sections, the concepts of "operational specification", "stimulus-response specification" and "interface centric approach" are explained.

Eu.ModSt.2043

8.1.2.1.1 Operational specification

Eu.ModSt.2045

An operational specification describes the behaviour of a system using an abstract machine. This can be realized using data-flow diagrams that assemble functions connected by data flows. Since data flows may not always be
natural for expressing control aspects, finite state machines can be preferred to describe the temporal and behavioural views of a system.

Eu.ModSt.2046

Control is specified using states, events, and transitions in response to stimuli. There are many variants of state machine specification languages. A state machine can be executed, to validate the behaviour, and static analyses
of the state machine can be performed (including consistency properties, and formal verification of properties).

Eu.ModSt.7067

In general, using an operational specification of behaviour and requirements offers an advantage in that it enables to determine if a specific property holds or not. This can prevent communication issues between different actors
(designers, builders, customers, and users) since the operational specification provides a reference model to check the property against.

Eu.ModSt.114

For an operationally specified functional system property, there is a test that they can all perform and agree on the outcome - either the SUS/SIUS to be specified does or does not satisfy this property (see Figure 115).

© EULYNX Partners

Page 18 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.7068

Whether an operational specification exhibits a specific property may often-case be easy to determine but it may also offer a challenge, for various reasons. To determine if a property holds or not can be non-trivial due to e.g.,
specification complexity that may prevent inspection alone, state-space explosion impacting the results attainable in automated analysis, and semantics for interpretation that can complicate analyses.

Eu.ModSt.7069

In general, it is desirable to have an implementation-independent operational specification, so that all stakeholders can agree on and use the same specification. The reason for this is to avoid, when the SUS/SIUS is delivered,
that supplier and customer dispute about whether SUS/SIUS meet the desired properties or not. In general, it is recommended that SUS/SIUS specifications are operationalised as much as possible [8].

Eu.ModSt.115

Figure 115 Test of an operationally specified system property

: _—
cam Ervironmenit .
jation Environt : ly specified

Lk OperatiOnal

maiigauon of'an operatonally speciied property

— e Tl “stmulus_1 ¥
| — - S ot HIE =

ey = 2
| O ryiou D1 _Resporse =~ ‘Enirpiout_Di_Resporse = “desined aflect”,

| e vz

desired effect

whand in_TI _Stimulus 2)

whaen{ in_T1_Stim wus_1 W

c3
e
whan|in_T2_Stewlus_2 R_Enlrr'-'“'-“.:l'_REi:nrrse-.: C—

—

. e
w‘uﬂm_ 1St g3

sti -
imulys 'ésponse behavigyy

Eu.ModSt.7066

8.1.2.1.2 Stimulus-response specification

Eu.ModSt.7070

Stimulus-response specifications are an important class of operational specifications.

Eu.ModSt.2049

A stimulus-response specification has the form
SANDC=>r

where s is a stimulus, C is a condition on the system state, and r is a response. The design process consists of decisions about r.

Eu.ModSt.2050

In a nutshell, whenever a stimulus occurs there will be a corresponding response. The kind of response depends on the condition on the state of the system. Please note: this is also said to be a response if a stimulus occurs and
the system "keeps quiet".

Eu.ModSt.2051

A single stimulus-response pair is henceforth also referred to as an interaction.

Eu.ModSt.2052

An interaction is generally formulated according to the following action block schema comprising four action steps (see Figure 173):

Interaction:
I. - The SUS or SIUS receives a stimulus.
IL. The SUS or SIUS validates the stimulus.
III. The SUS or SIUS changes its internal state (or not).
IV. The SUS or SIUS responds with the result (Please note: a result may also be that the SUS or SIUS "keeps quiet").

However, there may be more than four action steps applied or fewer.

© EULYNX Partners

Page 19 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.173

Figure 173 The four steps of an action block

."'- Sy 3
() -
A stimulus

«blockx»
System

)

i

L9

=

Y response
(ﬂi‘: 4+ IVE

Light

N

validate ||

A
Y

change “I

Nt

Eu.ModSt.2053

An interaction always starts with the stimulus identified by a dash "-" (see step I in ID 355 above). A stimulus may have its origin
¢ in the request of a primary actor (a primary actor is an actor in the environment of the SUS or SIUS who requires a service from it),
¢ in a timed trigger,
¢ in an internal trigger (that is, an event that occurs in the system) or
¢ in the entering or leaving a system state.

Eu.ModSt.2054

Interactions may be extended to contracts.

Eu.ModSt.2055

The central idea of contracts is a metaphor on how the SUS or SIUS and the actors collaborate on the basis of mutual obligations and benefits. Having written functional requirements in the style of interactions, those contracts
can easily be obtained - interactions together with pre- and postconditions.

Eu.ModSt.2056

If a SUS or SIUS provides a certain functionality, it may

a) expect a certain condition to be guaranteed on entry by an actor that sends the request: the precondition of the interaction - an obligation for the actor, and a benefit for the SUS or SIUS, as it relieves it from having to
handle the cases outside of the precondition.

b) guarantee a certain property on exit: the postcondition of the interaction - an obligation for the system, and obviously a benefit (the main benefit of the request) for the actor.

Eu.ModSt.2057

The following applies for preconditions and postconditions in this context:
a) The interaction may only be triggered by the actor if the precondition is met; this presupposes that the actor knows the current system condition,

b) The system must ensure in turn that the postcondition is met after the completion of the interaction. If no explicit postcondition has been defined (indicated by three dashes "---"), the requirement applies that the
postcondition is identical to the precondition.

Eu.ModSt.2058

A contract is formulated according to the following schema:

Precondition:
Definition of the precondition

Interaction:

I. - The SUS or SIUS receives a stimulus.

III. The SUS or SIUS changes its internal state (or not).

IV. The SUS or SIUS responds with the result (Please note: a result may also be that the SUS or SIUS "keeps quiet").

Postcondition:
Definition of the postconditions

Eu.ModSt.2059

Alternatively to this, functional system requirements may be written without using contracts. In these cases it can not be assumed that the actor knows the current SUS or SIUS condition and complies with the precondition.
The preconditions of the interactions are empty and the SUS or SIUS must first check on itself whether the preconditions are met before responding to the stimulus. The above schema is modified as follows (see text in italics):

Precondition:

© EULYNX Partners

Page 20 of 119

Modelling Standard

ID Requirement

Interaction:

I. - The SUS or SIUS receives a stimulus.

I1. 7The SUS or SIUS validates the stimulus considering the current internal state.

III. The SUS or SIUS changes its internal state (or not).

IV. The SUS or SIUS responds with the result (Please note: a result may also be that the SUS or SIUS "keeps quiet").

Postcondition:
Definition of the postconditions

Eu.ModSt.2060 In those cases, the check may fail in the second step. From this step on, a different internal condition might need to be entered and a different response might need to take place. Variants of the interaction would therefore
have to be considered.

Eu.ModSt.2062 Interactions and contracts, as defined above, provide the basic schemata for the model-based description of functional system requirements in stimulus-response form. Depending on the abstraction level two model-based
description methods are used:

* Use case scenarios (interaction scenarios) are used at abstraction level AL1 Subsystem Definition defining the interaction of the subsystem with its environment.
» State machines are used at abstraction level AL2 Subsystem Requirements completely refining the externally visible stimulus-response behaviour described by means of the use case scenarios at abstraction level AL1
Subsystem Definition.

Eu.ModSt.2063 These two model-based description methods will be demonstrated defining the functional system requirements of a simple system based on the functional user requirements (FUR) listed below:

FUR1: The user wants to switch on the light by pressing a button if the light is off,
FUR2: The user wants the light to be switched off automatically after a defined time.

Eu.ModSt.2064 As shown in Figure 3the SUS named "System" is connected to the two actors "Light" and "Button" in the environment.

Eu.ModSt.2065
Figure 3: Simple system

«blocks
System

A\ 4

~fv ~
2% =
Light

Eu.ModSt.2066 According to the functional user requirements described above the SUS is required to fulfil the functional system requirements (FSR), described in classical textual form below:

FSR1: The system shall switch on the light if the light is switched off and the button is pressed,
FSR2: The system shall switch off the light automatically after the time t_Light_On has expired.

Eu.ModSt.2067 | 8.1.2.1.3 Description method using use case scenarios

Eu.ModSt.2068 The functional user requirements FUR1 and FUR2 defined above (see ID 215) require the SUS "System" to provide a service for the users. As shown in Figure 2070, this service is defined as system use case "SysUC1.1: Switch
on the light time-limited".

© EULYNX Partners Page 21 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.2069

System use cases describe the functionality of a SUS or SIUS in terms of how it is used to achieve the goals of its various users. The users of a SUS or SIUS are described by actors (i.e. "Button" and "Light"), which may
represent external systems or humans who interact with the system. A UseCase is denoted by an ellipse, and the actors participating in the UseCase are connected to the ellipse by solid lines.

Eu.ModSt. 184

On the original work on UseCases by Ivar Jacobson, Jacobson defines a UseCase as follows [20]:

LA use case is a sequence of transactions performed by a system, which yields an observable result of value for a particular actor. A transaction consists of a set of actions performed by a system and is invoked by a stimulus
from an actor to the system, or by a timed trigger within the system".

Eu.ModSt.186

To understand transactions in the database sense is too narrow, because if a transaction succeeds then changes are made to the system (committed), otherwise the system is reverted to the original state (rollback).

Eu.ModSt. 187

Cockburn interprets in his book [22] what Jacobson [20] means by a transaction in the four steps of an action block (see Figure 173) representing an interaction.

Eu.ModSt.189

The flow between the trigger and the result of a use case has a time coherence, i.e. no domain interruption is possible.

Eu.ModSt.2070

Figure 2070: UseCase shown in a UseCase diagram

uc [Package] System - Functional Context [Functional Viewpoint - System Deﬁnition]]

/
Button

Light

Eu.ModSt.2071

A complete use case, i.e. a primary UseCase consists of one or multiple interactions which can alternatively be formulated as contracts. A UseCase having only one interaction is an interaction written as a use case.

Eu.ModSt.2072

The interactions specifying a UseCase such as "SysUC1.1: Switch on the light time-limited" are described in a model-based way by use case scenarios. Use case scenarios are represented by SysML sequence diagrams.

Eu.ModSt.2073

The specification of the use case scenarios may cover a standard sequence and one or several alternative sequences, e.g. to represent a failed validation of the stimulus. Normally, the "good case" of an use case scenario is
specified in the "standard sequence" and deviating sequences in "alternative sequences". If no unique standard sequence can be determined, it is also possible that only "alternative sequences" exist.

Eu.ModSt.2074

For this reason, a use case may be defined by use case scenarios in the following compositions:
- one Main Success Scenario and any number of Alternative scenarios,

- only one Main Success Scenario,

- any number of Alternative Scenarios without a Main Success Scenario.

Eu.ModSt.2075

Several interactions may be combined directly after each other without explicitly depicting the pre- and postconditions between them in an interaction scenario if the postconditions of the previous interaction are identical to the
preconditions of the subsequent interaction.

Eu.ModSt.2076

If it can be assumed that the current state of the SUS is visible in its environment, the textually formulated functional requirements FSR1 and FSR2 (see ID £u.ModSt.2066) can be described as contracts:

FSR1:
Precondition:
System is in state OFF

Interaction:

I. - System receives the request "Button_Pressed" from the actor "Button".

III. System changes to state "ON".

IV. System responds to the actor "Light" with the command "Switch_Light_On".

Postcondition:
System is in state ON

FSR2:

© EULYNX Partners

Page 22 of 119

Modelling Standard

ID

Requirement

Precondition:
System is in state ON

Interaction:

I. - System detects that the time "t_Light_ON" has expired.

III. System changes to state "OFF".

IV. System responds to the actor "Light" with the command "Switch_Light_ OFF".

Postcondition:
System is in state OFF

Eu.ModSt.2077

The corresponding use case scenario in the form of a Main Success Scenario is depicted in Fgure 2078. FSR1 and FSR2 are written as contracts and as a consequence no Alternative Scenarios are required. As the precondition of
FSR2 is identical to the postcondition of FSR1 they are not explicitly depicted in the use case scenario.

Eu.ModSt.2078

Figure 2078 Main Success Scenario with FSR1 and FSR2 written as contracts
sd SysUC1.1 - Main Success Scenario [Sys SD 1.1.1]J fg f(

[Buiton] [iig

Main Success Scenario:
Switch on the light time-limited (written as
contract)

Precondition:
System is in state OFF.

Interaction 1.1.1.A: Butian Pressed

1. - System receives the request Button Pressed
from the actor Button.

2. System changes to state ON

f Switth_Light_On

3. System responds to the actor Light with the *
command Switch_Light_On.
Interaction 1.1.1.B: after {_Light_Qn

4. - System detects that the time t_Light On has
expired.

e L TP LT LR EPPEPTREEEPEPIEE

=

r

3. System changes to state OFF. Swigh_Light Off

6. System responds to the actor Light with the
command Switch Light Of

Postcondition:
System is in state OFF.

Eu.ModSt.2079

If it can not be assumed that the current state of the SUS is visible in its environment, the textually formulated functional requirement FSR1 is to be described as interaction without precondition. FSR2 may be described as
contract because the interaction is internally time-triggered and it is required that the current state may only be changed by this trigger:

FSR1:
Precondition:

Interaction:

I. - System receives the request "Button_Pressed" from the actor "Button".

II. System evaluates that the request is valid because it is in state OFF.

III. System changes to state "ON".

VI. System responds to the actor "Light" with the command "Switch_Light_On".

Postcondition:

© EULYNX Partners

Page 23 of 119

Modelling Standard

ID

Requirement

System is in state ON

FSR2:
Precondition:
System is in state ON

Interaction:

I. - System detects that the time "t_Light_ ON" has expired.

III. System changes to state "OFF".

IV. System responds to the actor "Light" with the command "Switch_Light_OFF".

Postcondition:
System is in state OFF

Eu.ModSt.2080

The corresponding use case scenario in the form of a Main Success Scenario is depicted in Figure 2081.

Eu.ModSt.2081

Figure 2081 Main Success Scenario with FSR1 not written as contract

sd SysUC1.1 - Main Success Scenario [Sys SD 1_1.2]J i ﬁ

Button] [Light

Main Success Scenario:
Switch on the light time-limited (not written as
contract)

Precondition:

Interaction 1.1.2.A: Butidn Pressed

1. - System receives the request Button_Pressed
from the actor Button.

2. System evalutes that the request is valid because
it is in state OFF.

3. System changes to state ON.

% suitgn_Light_on

~

4. System responds to the actor Light with the
command Switch_Light On.
Interaction 1.1.2.B: after {t Light_On}

5. - System detects that the time t_Light_On has '
expired.

6. System changes to state OFF.

L

7. System responds to the actor Light with the
command Switch_Light Of

Postcondition:
System is in state OFF.

Switeh_Light_Off

Eu.ModSt.2082

As FSR1 is not written as a contract, action step 2 of the corresponding interaction may be evaluated as not valid. As a consequence, an alternative variant of the interaction has to be described:

FSR1:
Precondition:

Interaction:
I. - System receives the request "Button_Pressed" from the actor "Button".
III1. System evaluates that the request is not valid because it is in state ON.

© EULYNX Partners

Page 24 of 119

Modelling Standard

ID Requirement

IV. System remains in state "ON".

Postcondition:
System is in state ON

FSR2:
Precondition:
System is in state ON

Interaction:

I. - System detects that the time "t_Light_ ON" has expired.

III. System changes to state "OFF".

IV. System responds to the actor "Light" with the command "Switch_Light_OFF".

Postcondition:
System is in state OFF

Eu.ModSt.2083 The corresponding use case scenario in the form of an Alternative Scenario is depicted in Figure 2084.

Eu.ModSt.2084
Figure 2084 Alternative Scenario

sd SysUC1.1 - Atemative Scenario [Sys SD 1.1.3] ﬁ

Button| [Light

Alternative Scenario:
Switch on the light time-limited (not written as
contract)

Precondition:

Interaction 1.1.3.A: Butllan Fressed

1. - System receives the request Button_Pressed
from the actor Button.

2. System evalutes that the request is not valid
because it is in state ON.

3. System remains in state ON.
Interaction 1.1.3.B:

4. - System detects that the time t_Light On has
gxpired.

5. System changes to state OFF.

6. System responds to the actor Light with the
command Switch_Light Off

Postcondition:
System is in state OFF.

Swidh_Light_Off

]
[

Eu.ModSt.2085 | 8.1.2.1.4 Description method using state machines

Eu.ModSt.2086 State machines are used at abstraction level AL2 System Requirements to completely refine the stimulus-response behaviour which has been described by means of the use case scenarios at abstraction level AL1 System
Definition.

Eu.ModSt.2087 Figure 2088 shows a state machine specifying the stimulus-response behaviour of the UseCase "SysUC1.1: Switch on the light time-limited".

© EULYNX Partners Page 25 of 119

Modelling Standard

ID Requirement

Eu.ModSt.2088
Figure 2088 FSR1 and FSR2 specified using a state machine

stm Switch_on_the_light_time_limited - Behaviour [STD 1]|

R
when({ Button_Pressed)/
Switch_Light On := TRUE;

ON

after(t_Light_On 3/
Switch_Light Of := TRUE;

Eu.ModSt.2089 The declaration of this state machine is identical to the original textual requirements (see ID 93) FSR1 (Transition from state "OFF" to state "ON") and FSR2 (Transition from state "ON" to state "OFF"):
FSR1: The system shall switch on the light ("Switch_Light_On := TRUE") if the light is switched off (state "OFF") and the button is pressed ("when(Button_Pressed)").

The Transition from state "OFF" to state "ON" represents a functional system requirement and may be textually formulated in the requirements specification document as shown below:

Info | OFF
Req | when(Button_Pressed)/Switch_Light_On := TRUE {OFF - ON}
Info | ON

FSR2: The system shall switch off the light ("Switch_Light_OFF := TRUE") automatically after the time t_Light_On has expired ("after(t_Light_On)").

The Transition from state "ON" to state "OFF" represents a functional system requirement and may be textually formulated in the requirements specification document as shown below:

Info | ON
Req | after(t_Light_On)/Switch_Light_Off := TRUE {ON - OFF}
Info | OFF

Eu.ModSt.7013 8.1.3 Overview introduction to the EULYNX MBSE Process

Eu.ModSt. 1659 The EULYNX MBSE process is part of the EULYNX systems engineering process with the main process tasks documented in the EULYNX verification and validation plan [31]. The EULYNX systems engineering process is closely
oriented on the CENELEC system life cycle defined in EN 50126 and covers the phases listed below:

Phase 1: Concept,

Phase 2: System definition,

Phase 4: System requirements,

Phase 5: Apportionment of system requirements,

Phase 10: System acceptance and

Phase 11: Operation and maintenance,

Eu.ModSt.1662 The CENELEC system life cycle follows the V-model, which highlights verification and validation, especially regarding the fulfilment of safety requirements, as important tasks.

Eu.ModSt.7101 Already during the specification phases of the V-model, verification and validation are important activities, applied to assure the quality of the specification itself.

Eu.ModSt.7102 This is especially necessary for the context of the EULYNX MBSE approach, where models of the required system behaviour represent abstract reference implementations of the future system (virtual prototypes) and are
regarded as mandatory requirements in tender specifications.

Eu.ModSt.7103 Following this notion, it is necessary to provide a “small V"-process, guiding the top-down development of those virtual prototypes using executable SysML state machines and their validation and verification within the
specification phases of the underlying “big V"-CENELEC process.

© EULYNX Partners Page 26 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.7104

In Figure 1658, the "small V" is highlighted in the "big V" and pictures the relationships of verification and validation as part of the virtual prototype development.

Eu.ModSt.1658

Figure 1658 EULYNX "smal V" model

Validation of State Machine Models by IMs

The “small V™ process of the
EULYNX specification

forms a self-contained part of the
“big V" process of the [subsequent)
total system development,

Source: EULYNX

Eu.ModSt.1539

The AM MBSE essentially covers the "Formalised Requirements" and "State Machine Implementation" phases of the "small V" process. It defines the model views at abstraction levels AL1 and AL2 for the creation of:
* specification models of subsystems (SUS) and
* specification models of interfaces (SIUS).

Eu.ModSt.7469

The requirements at abstraction level AL3 of the AM MBSE are currently not defined in EULYNX in a model-based manner.

Eu.ModSt.1555

The behaviour of EULYNX SUS/SIUS is specified from the black box perspective. In a black box specification only the black box behaviour of the SUS/SIUS is considered, i.e. only the external properties of the SUS/SIUS are
defined (externally visible input/output behaviour).

Eu.ModSt.7105

User Requirements derived from infrastructure manager (IM) expert knowledge are represented in both cases in the requirements management tool in the form of a "Function List". It lists the required functions used as input
information for the creation of the model views at abstraction level "AL 1 Subsystem Definition” "or "Interface Definition" of the AM MBSE using the modelling tool.

Eu.ModSt.7931

If an architectural description of the overall system is available in the form of an analysis model, the model artefacts of the analysis model required for the creation of the respective EULYNX specification model are transferred to
the EULYNX specification model by model-to-model transformation.

Eu.ModSt.7470

At this point, the SUS use cases (services) are defined with their stimulus-response behaviour selectively specified by means of use case scenarios using SysML sequence diagrams (Formalised Requirements).

Eu.ModSt.7471

Subsequently, the conformity of the model to the SysML specification and the modelling rules defined in the EULYNX Modelling Standard is statically checked using the modelling tool by a modeler in the role of a model verifier.

Eu.ModSt.7472

Additionally, the use case scenarios are validated by means of inspection by the corresponding IMs in the roles of model validators.

Eu.ModSt.7473

In the next step, the system views created at abstraction level “"AL 1 Subsystem Definition/Interface Definition” are refined at abstraction level AL 2 Subsystem Requirements/Interface Requirements” by means of executable
SysML state machines (State Machine Implementation).

Eu.ModSt.7474

The conformity of the model to the SysML specification and the EULYNX Modelling Standard is verified tool-based and by means of inspection by the model verifier.

Eu.ModSt.7475

To implement the state machines as a virtual prototype, simulation code is generated. Subsequently, the GUI of the virtual prototype is designed, and an executable is created.

Eu.ModSt.7476

The executable representing the virtual prototype enables both the tool-independent standalone simulation of the specified behaviour and when connected to the simulation tool the simulation together with the animation of the
corresponding state machines.

© EULYNX Partners

Page 27 of 119

Modelling Standard

ID Requirement

Eu.ModSt.7477 The virtual prototype enables simulation-based testing of the specified behaviour by injecting stimuli on the GUI and observing the responses optically indicated. The principle of a virtual prototype is depicted in Figure 7481.

Eu.ModSt.7478 In the following step (State Machine Testing), the conformity of the behaviour defined by the state machines to the use case scenarios in the overlying abstraction level "AL1 Subsystem Definition/Interface Definition” is
dynamically verified by simulation-based testing of the virtual prototype carried out interactively by the model verifier.

Eu.ModSt.7479 For this purpose, the scenarios are used as test cases and in parallel, the animated state machines observed (white box testing of the behaviour). Additionally, the correct creation of the state machines such as freedom of
deadlocks is verified by the model verifier using interactive state machine animation based on a dedicated test specification.

Eu.ModSt.7480 The standalone virtual prototype is then handed over to the IMs to validate the behaviour specified by the state machine by means of simulation-based testing (black-box testing of the behaviour). The validation process is
finished successfully when all participating IMs provide evidence that their user requirements (including safety requirements) are satisfied by the specified behaviour. The successful validation process leads to the production of a
new baseline.

Eu.ModSt.7481
Figure 7481 Principle of a virtual Prototype

L - . — e
=== R T L ' T ¢
_ P—— A

: o,

oo 080N

Eu.ModSt.7094 Figure 7116 shows the commonly used engineering paths for generating the model views of the SUS or SIUS specification models in conformity with the "small V" shown in Figure 1658. Depending on the project-specific input
conditions, the engineering paths can also be applied in a modified form.

Eu.ModSt.7118 In general, the engineering path for creating the SUS model views (black dashed arrows) includes the engineering path for creating the SIUS model views (red dashed arrows).

Eu.ModSt.7117 The model views used reflect the current state of the EULYNX MBSE methodology and may be complemented by further model views in the future (e.g. model views of the Technical Viewpoint or model views on AL3).

© EULYNX Partners Page 28 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.7116

Figure 7116 Engineering paths of the EULYNX "smal V" model

Technical Viewpoint | CSP

Data

RAMS and Security

. | Functional i~ Technical |
..... ._,."";‘ Functional Entity E
_______________ _.____,.a-"' . J*tlﬂa} =
I ! 1
B— I Technical I
(Ba)y . (6b) » ~ s Functional g
Functional | (7b) e

L r“ -

I o -=="(9a) -- -+ Engineering path SUS

ST e e e =T ---+ Engineering path SIUS

! l | L | BE——

Eu.ModSt.1549

The engineering path for creating the SUS model views starts at the Functional Viewpoint on abstraction level AL1.

Eu.ModSt.1241

Task (1): creation of model view "Functional Context"
Based on stakeholder requirements (for example IM requirements) which are defined in the area User Requirements of the MBSE SF, for example in the form of a function list, the model view "Functional Context" is created (1).

Eu.ModSt.1630

As shown in Figure 1633, the model view Functional Context summarises the use case structure graphically and names all use cases the SUS is expected to perform. Furthermore, it allocates the use cases to the SUS and defines
their interrelations as well as their relations to the actors in the SUS environment.

Eu.ModSt. 1557

Use cases describe the functionality of a SUS such as "Subsystem Point" in terms of how it is used to achieve the goals of its various users. In model view "Functional Context" they are denoted by ellipses, and the actors
participating in the use cases are connected to the ellipses by solid lines.

Eu.ModSt. 1623

The users of a system are described by actors, which can represent external systems such as "Point machine" or people who interact with the system.

Eu.ModSt.1628

Consequently, a use case does not contain any information how it is implemented in the SUS.

© EULYNX Partners

Page 29 of 119

Modelling Standard
ID

Requirement

Eu.ModSt.1633
Figure 1633 Model view "Functional Context" of a SUS
Ut [Package] Subsystem Pont - Functonal Context [Funcional View point - Subsystem Definition - l:lps'al:iun]]

Subsystem-
Electronic
Interiocking

Point machine

Eu.ModSt.1622 Task (2): creation of model view "Use case scenarios"
Based on the definitions in the model view "Functional Context", the model view "Use case scenarios" is subsequently created.

Eu.ModSt. 1653

A use case may be defined by one or more use case scenarios (SysML sequence diagrams) in order to describe the exchange of messages between the SUS and its environment. It is the central construct to define parts of
behaviour of the SUS that can be observed at the system boundary.

Eu.ModSt.1634

An example use case scenario of the use case "P_UC2.1.1.1: Commanding and reversing" is depicted in Figure 1635.

© EULYNX Partners Page 30 of 119

Modelling Standard

ID

Requirement

Eu.ModSt. 1635

Figure 1635 Model view "Use case scenario" of a SUS

P 1.1.1: ing and i

Nen 4W [P 5D 2.1.1.1.1)
Precondition:

The Subsysiem - Point is in the stale OPERATIONAL.

The Subsystem - Point is confgured with & non-4-ware inle riace 1o the
P oint machine.

The Subsystam - Pointis in

- an End position *%™, or

= Mo end position, or

= an Uninbended pogition

Interaction 2.1.1.1.1.A:

1. - The Subsystem - Point receives fom the Subsystem - Electronic
Interlocking the Command lo move the Paint to an E nd position "X

2. The Subsysbtem - Point sends the Comm and to the Point machine to
move the Point machine to an E nd position "X, At this moment the
Subsysiam - Point starts to monitor the tim & pariod
Con_tmax_Point_Opemtion,

Interaction 2.1.1.1.1.8:

opt [The Subsystem Point was previously in an E nd position or a
Unintended position]

3.a1 - The Subsysiem - Point receives fom the Point maching the
Inbrmation that the Point machine is in No end position.

3. b1 The Subsystem - Point reports to the Subsystem - Electronic
Interlocking that the Point is in No end position

end opt

Interaction 2.1.1.1.1.C;

4. - The Subsystem - Point receives from the Point maching the
Inbrmation that the P oint machine is in an E nd position "X

5. The Subsystem - Point sends the Command to the Point machine to

the time period Con_tmax_P oint_O peration

6. The Subsysiem - Point repons to the Subsystem - Electmnic
Interiocking that the Paint is in an E nd position ™.

Postcond ition:
The Subsystem - Point isin an End position ",

Main Success Scenaro: Movng ofthe Point with a single point machine

stop moung the Point machine, The Subsystem - Point stops Lo monitor

X

X

IS ubsystem-Electronic inferloc -:mg[[F' ointma ;hinei

1

I
|
|
I
I
I
|
I
I
T
|
"

Cd_Move_Point{ End Position X}

Moving

{==Con_tmax_Point_Operaton]

Iformaton_Mo_End_Poslion

W

T
Msg_Point_Postipn(NoEndP osttion)

- Information_ko_End_Pastion

Stop_Moving

ﬁr

Msg_Point_Position{EndPositionX)

Eu.ModSt. 1629

Task (3): creation of model view "Logical Context" of a SUS

Based on the definitions in the model views "Functional Context" and "Use case scenarios" the model view "Logical Context" is subsequently created at the Logical Viewpoint on abstraction level AL1.

Eu.ModSt. 1535

In the example shown in Figure 1540 the model view "Logical Context" is depicted. It describes the structure of the SUS at the top level and the actors in the environment interacting with it and their quantity structure
(multiplicities). Furthermore, the logical interfaces such as SCI-P, SSI-P, P3 and so on between the SUS and the actors are defined.

© EULYNX Partners

Page 31 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.1540

Figure 1540 Model view "Logical Context" of a SUS

bdd [Package] Subsystem Point - Logical Context [Logical Viewpoint - Subsyster Definition] |

Eu.ModSt.1562

Task (4): creation of model view "Logical Context" of the interfaces to be standardised

Based on the definitions of the logical interfaces defined in model view "Logical Context" of a SUS, the model view "Logical Context" of its standardised interfaces (SIUS) is subsequently created at the Logical Viewpoint on

abstraction level AL1.

Eu.ModSt.7122

At the upper level of abstraction an interface is represented by a SysML association. An association is depicted as a continuous line between the communication participants. The association that represents a logical interface in

the model view "Logical Context" of the SIUS corresponds to the respective association in the model view "Logical Context" of the SUS.

Eu.ModSt.1626

The model view "Logical Context" of a SIUS as shown in Figure 1637 describes the logical view of an interface at the upper level of abstraction.

Eu.ModSt.7123

The SysML association is linked to a SysML association block, which serves to refine the relationship. The global behaviour of the application protocol (Railway Control Protocol: RCP) is then

specified in this later.

© EULYNX Partners

Page 32 of 119

Modelling Standard

ID Requirement
Eu.ModSt.1637
Figure 1637 Model view "Logical Context" of a SIUS
’ «logical structural entitys
g st il 1 i Logical Context of SUS
Interiocking SCI-P * S0P
bdd [Package] SCI-P - Logical Context [Logical "ﬁrﬁwpmnt - Interface Deﬁmhon]_i
soscasmararemysy Logical Context of SIUS
SCIP
: Subsystem Point - Functional
Subsystem Electronic Interlocking | | Architecture
«Iogical structural enfity» 1 4 | SCLP s [<logical structural entitys
Subsystem Electronic interlocking SCIP o Subsystem Point

Eu.ModSt. 1627

Task (5): creation of model view "Functional Partitioning" of the interfaces to be standardised
Based on the definition of the model view "Logical Context" of the relevant interfaces, the model view "Functional Partitioning" is subsequently created at the Functional Viewpoint on abstraction level AL1.

Eu.ModSt.1636

The model view "Functional Partitioning" as shown in Figure 1643 describes the refinement of the interface defined in model view "Logical Context" using FEs. These FEs specify the local behaviours (see chapter 8.2.4) of the
application layer (PDI: Process Data Interface Protocol) of the communication protocol stack on each side of the communication link.

Eu.ModSt.7901

The FEs are assigned to the involved subsystems via reference associations (marked with a white diamond). The reference associations express that the FEs are not part of the subsystems, but are only used there. They are part
of the PDI.

Eu.ModSt.7319

In addition, the respective possible number of FEs is determined by multiplicities.

Eu.ModSt.7320

The model view "Functional Partitioning" of a SIUS is the basis for the model view "Functional Architecture" of a SIUS. While the former, however, defines the absolute behaviour (the maximum possible number of FEs is
defined), the model view "Functional Architecture" also allows an excerpted description (Description of different configurations).

© EULYNX Partners

Page 33 of 119

Modelling Standard

ID

Requirement

Eu.ModSt. 1643

Figure 1643 Model view "Functional Partitioning" of a SIUS
bdd [Fackage] SCI-P - Functional Partitioning [Functignal Viewpoint - Interface Requirements]j

sCLp
Subsystem Electronic Interlocking] I Subsyslem Poit |
[
[
slogical structural entitys 1 | SCLE - 1 [wlogical stn

M Electronic Interlocking sap sche mwm
¢ ¢ Q WK IEY
i1 1 1l 1 1

Generic requirements for subsystems |

SCI-P - Functional Viewpoint

Eu.ModSt.1640

Since the FEs defined in the model view "Functional Partitioning" are used for the further specification of both the SUS and the SIUS, the engineering path splits at this point. The further creation of the model views takes place
along two different engineering paths, which are described in the following two subchapters 8.1.3.1 Engineering path SUS and 8.1.3.2 Engineering path SIUS.

Eu.ModSt. 1927

8.1.3.1 Engineering path SUS

Eu.ModSt. 1537

Task (6a): creation of model view "Functional Partitioning" of a SUS
Starting from the model view "Functional Partitioning" of the involved SIUS, the engineering path continues with the generation of the further model views of the SUS at the Functional Viewpoint at abstraction level AL2.

Eu.ModSt.208

First, the model view "Functional Partitioning" of the SUS as depicted in Figure 1451 is created. It describes the refinement of the SUS by means of the FEs defined in the SIUS model view "Functional Partitioning", which
represent the local behaviours of the PDI, as well as the FEs specific to the SUS (linking behaviour according to chapter 8.2.4).

Eu.ModSt.7902

FEs which are assigned to the subsystem via reference associations (marked with a white diamond) are not part of the subsystem, but are only used there. They represent the local behaviour of the PDI and are part of it.

Eu.ModSt.7903

FEs which are assigned to the subsystem via composite associations, i.e. so-called whole-part relationships (marked with a black diamond) are part of the subsystem. They represent the specific behaviour of the subsystem that
influences more than one interface. This so-called "linking behaviour" is also used to link the behaviour assigned to the interfaces.

Eu.ModSt.7318

In addition, the respective possible number of FEs is determined by multiplicities.

Eu.ModSt.1930

The model view "Functional Partitioning" of a SUS is the basis for the model view "Functional Architecture" of a SUS. While the former, however, defines the absolute behaviour (the maximum possible number of FEs is defined),
the model view "Functional Architecture" also allows excerpted descriptions (Description of different configurations).

© EULYNX Partners

Page 34 of 119

Modelling Standard

ID Requirement

Eu.ModSt. 1451

Figure 1451 Model view "Functional Partitioning"
bdd Puoint- Functiona Partitoning [FunctionaVe int -

SCHP- FunctionalViewpoint I

-

-

|
11

SubsysiemFoint-FunchoraEnties |

s

[[1

Eu.ModSt.1647 Task (7a): creation of model view "Functional Entity" of a SUS
Based on the SUS-specific FEs defined in the model view "Functional Partitioning" of a SUS, the model view "Functional Entity" as shown in Figure 1644 is created for these FEs.

Eu.ModSt.7322 SUS-specific FEs represent control system functions such as "F_Control_Point" (see Figure 1644). They have executable SysML state machines and SysML block operations to describe behaviour. SysML state machines enable the
specification of finite discrete event dynamic behaviour. SysML block operations are used to perform logical or algebraic transformations.

Eu.ModSt.7463 The model view "Functional Entity" describes the behaviour or part of the behaviour of a SUS independent of technology.

© EULYNX Partners Page 35 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.1644

Figure 1644 Model view "Functional Entity" of a SUS
ibd [Block] F_Control_Point [Functional Viewpoint - Subsystem Requirements - Functional Enlity]]

d10in_Required_Point_Fosition : String d12out_Required_PM_Position : String

d11in_Observed_Ability_To_Move ; String
d13in_Observed_Movement_Failed : Boolean
d1din_Obsened_Point_Position : String
D18in_Con_Use_Redmve - Boolean

d51in_EST_EfeS_State : Stang

Eu.ModSt. 1645

Task (8a): creation of model view "Functional Architecture" of a SUS

Based on the model view "Functional Partitioning" of the SUS, the model view "Functional Architecture" is created.

Eu.ModSt.7459

The model view "Functional Architecture" as shown exemplarily in Figure 1646 describes the external visible stimulus-response behaviour of a SUS represented by a Logical Structural Entity (LSE) that is structured in a way that
enables an interface centric specification approach as described in chapter 8.2.4. The behaviour of the SUS is divided into FEs, which communicate with each other via internal interfaces and with the environment via external

interfaces.

Eu.ModSt.7460

The model view "Functional Architecture" describes the behaviour of a SUS independent of technology.

© EULYNX Partners

Page 36 of 119

Modelling Standard

ID Requirement

Eu.ModSt.1646
Figure 1646 Model view "Functional Architecture" of a SUS

ibd Port [Fuciornl Viowpon = Furcioral Aechites Lo

Eu.ModSt. 1654 Task (9a): creation of model view "Technical Functional Architecture" of a SUS

Based on the model view "Functional Architecture" of the SUS, the model view "Technical Functional Architecture" is created at the Technical Viewpoint on abstraction level AL2. This model view is only created if technical
functional requirements are to be described in a model-based manner.

Eu.ModSt.7461 The model view "Technical-Functional Architecture" of the SUS, as exemplified in Figure 1558, describes the externally visible stimulus-response behaviour of a SUS represented by one or more TSEs based on technical
requirements. The SUS is represented by a technical structural entity (TSE).

Eu.ModSt.7462 The technology-independent behaviour described in the Functional Viewpoint in the form of a Functional Architecture through FEs is complemented or substituted by technology-dependent behaviour in the form of TFEs. TFEs
are coupled with each other, with already defined FEs or with the environment via external technical interfaces.

© EULYNX Partners Page 37 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.1558

Figure 1558 Model view "Technical Functional Architecture" of a SUS

 exd [lock] Sctywie Fomt 4 iim PV [Fuchnicals SesaET ARy Tashaical Fungtonal Architestuns]

Eu.ModSt.1652

Task (10a): creation of model view "Technical Functional Entity" of a SUS
Based on technical requirements, the model view "Technical Functional Entity" as shown in Figure 1578 s created at the Technical Viewpoint on abstraction level AL2.

Eu.ModSt.7464

TFEs represent technology-dependent control system functions such as "F_Control_And_Observe_4W_PM" (see Figure 1578). As well as FEs, TFEs also have executable SysML state machines and SysML block operations to

describe behaviour. SysML state machines enable the specification of finite discrete event dynamic behaviour. SysML block operations are used to perform logical or algebraic transformations.

Eu.ModSt. 1578

Figure 1578 Model view "Technical Functional Entity" of SUS

ibd [Block] F_Control_And_ Obserse 4% PM [Techmcal Viewpoint - Subsystem Requirements - Techmcal Functional Enitity

stechnical functicnal entitys
F_Control_And_Observe 4W_PM

d5hin_EST_EfeS State : Sting

D35in_Last_Target_Position - String

d19out_Ability To Move PM : Stng
dilout_PM_Position - String
D250ut_Detection_Voltage : Boolean

d2in_Move_Left_PM : Boolean
d2%in_Maove_Right_PM : Boolean

D26in_Dwmee_Vaoltage _Svanlable | Boolean
D24out_Drve_Voltage_Right - Boolean

D27in_4W_Pattam : String D23out_Drive_Voltage_Left - Boalean
d2in_Required_Point_Pasition : Sting
D4d4in_Con_Active - Boolean

D20in_Con_Dirve_Capability : Boolean

Eu.ModsSt.341

8.1.3.2 Engineering path SIUS

Eu.ModSt. 1649

Task (6b): creation of model view "Functional Architecture" of a SIUS
Starting from the model view "Functional Partitioning" of the involved SIUS, the engineering path continues with the generation of the further model views of the SIUS at the Functional Viewpoint at abstraction level AL2.

© EULYNX Partners

Page 38 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.7465

First, the model view "Functional Architecture" of the SIUS as depicted in Figure 1648 is created. It defines the global behaviour of the application protocol. As described in chapter 8.2.4 the global behaviour is described by
connecting the local behavioural components referenced by a communication partner with the corresponding ones of the neighbour via communication channels.

Eu.ModSt.7466

The description of the global behaviour of the application protocol is done by the internal structuring of the association block defined in model view "Functional Partitioning" of the involved SIUS. In this process, the
communication partners, which in turn reference the local behavioural parts of the protocol represented by FEs, are referenced in the form of SysML participant properties and connected via their interfaces with connectors.

Eu.ModSt. 1648

Figure 1648 Model view "Functional Architecture" of a SIUS
| e [Eck] SCLP - [Fanchonal Viewpont - Interface Regarements - Functional ﬁ.mmﬂ

bl
| alogical ports
| SCLP ;301 P_Subsystem_P

o Y YV " i | " = i - . e < e ' Ji

Eu.ModSt.1641

Task (7b): creation of model view "Information Flow" of a SIUS
Based on the defined interfaces in model view "Functional Architecture" of a SIUS the model view "Information Flow" is created. The model view "Information Flow" as shown in Figure 1567 describes the information objects to
be exchanged via an interface.

Eu.ModSt.7467

The information objects are represented by SysML signals such as "Cd_Move_Point". These signals can in turn have typed attributes such as "CommandedPointPositionState" that represent parameters of the information objects.
For example, the attribute "CommandedPointPositionState" is typed with the enumeration "PointPositionControlableState" with the available values "Left" and "Right".

Eu.ModSt.7468

The information objects are further refined into telegrams on AL3 of the AM MBSE. However, the telegrams are currently not yet implemented in a model-based way.

© EULYNX Partners

Page 39 of 119

Modelling Standard

ID

Requirement

Eu.ModSt. 1567

Figure 1567 Model view "Information Flow" of a SIUS

beddd [Package] SCIP - information Flows [Inedace Reguirements - indormation ﬂh,utslj

wevalueType [enumeration)s
PointPositionControlable State

CommandedPoint PositionS1ate

Le&t
Roght

walueType (enurmeration]s
PointPosition State

2= Loft,

ReporedFoinPostionSiate

ReportedDegraded™antPositson

Rt
HoEndPoston..

ovalunTyps (orumnaration)s
PointPositionDegraded State

MctDegraded .
NetAppicatie .

wvalueType (enumerationjs
Abiliry ToMove State

ReportedAbiliyToMomeState

AbeTolows

LirablaToblove

Eu.ModSt. 1642

Task (8b): creation of model view "Functional Entity" of a SIUS

After the information objects are defined, the model views "Functional Entity" are created for the FEs defined in the model view "Functional Partitioning" of a SIUS. These FEs such as "F_SCI_P_Report" (see Figure 1579)
represent the local behaviours of the RCP of the respective interface. They have executable SysML state machines and SysML block operations to describe behaviour. SysML state machines enable the specification of finite
discrete event dynamic behaviour. SysML block operations are used to perform logical or algebraic transformations.

Eu.ModSt. 1579

Figure 1579 Model view "Functional Entity" of a SIUS

ibd [Block] F_SCI F_Report [Functional Viewpoint - Interface Requirements - Functional Ent'rt:.r]l

d1din_Observed_Foint_Position - String
D15in_Con_Observe_Ability_Te_Move - Boolean
d17in_Observed_Degraded Point_FPosition : String

d50in_PDI_Connection_State : String

d11in_Observed_Ability_To_Mave : String pdinout - F_SC1_Specific

d13n_Observed_Movernant_Failed . Boolean Plout : SCI P 2

Eu.ModSt.2121

The following chapters describe general modelling rules (chapter 8.2) and the rules for creating the model views used to specify EULYNX SUS (chapter 8.3) and the ones used to define EULYNX SIUS (chapter 8.4). As the model

views "Functional Entity" and "Technical Functional Entity" are used for the specification of EULYNX SUS as well as for the specification of EULYNX SIUS they are described in the separate chapters 8.5 and 8.6.

Eu.ModSt.363

8.2 Model views - General modelling rules

© EULYNX Partners

Page 40 of 119

Modelling Standard
ID Requirement

Eu.ModSt.58 The Tystem requirements of a specification model (abstraction levels AL2 Subsystem Requirements and AL2 Interface Requirements) of the AM MBSE must be executable and provide a graphical user interface enabling model
simulation.

Eu.ModSt.60 Before delivering derived specifications to the signalling system supplier, quality assurance must be completed by carrying out the verification and validation activities defined in the MBSE process.

Eu.ModSt.63 Links to model elements embedded blue-coloured in model descriptions formulated in prose must not be put in quotation marks.

Eu.ModSt.1160 The related information, which is required to convoy the complete meaning of a model element, must be documented for each used model element in the modelling tool (e.g. Properties ->Text->Description).
Unless there are project-specific commitments, stereotypes such as <<block>>, <<ProxiPort>> and so forth may be shown on the diagrams if the modeller regards it as beneficial.

Eu.ModSt.1161

Eu.ModSt.1162

Unless there are project-specific commitments, data types such as Boolean, Integer, PulsedIn, PulsedOut and so forth may be shown on the diagrams if the modeller regards it as beneficial.

Eu.ModSt.1239

Shapes and colours of model elements presented in this modelling standard can be adapted according to project-specific commitments, unless explicitly required.

Example:
An actor basically is depicted as a stickman. It might be project-specifically determined to use the image of a cube if the actor represents a system and a "stickman" if the actor represents a person.

Eu.ModSt.1456

Project-specific requirements transcending the requirements of Modelling Standard are to be documented separately.

Eu.ModSt.7847

As shown in principle in Figure 7847, the AM MBSE is to be represented by the package structure in the modelling tool.

Eu.ModSt.7844

Figure 7844 Representation of the AM MBSE through the package structure

AM MBSE: Instance System Element
tumﬁunal Viewpoint | | ogical Viewpoint | Technical Viewpoint |CSP
\\ JI'
L b i
== " : @
:' iz
AL2 - ' S
N . ., - 5
- b]
- . = 1_\ :
- %]
- +Functienal requirements specification g
L £ +SubsystemPoint %Functional Viewpoint |
:: -'-ﬂeflnltion"u'ft‘im_g values :
s +- +5ubsystem Point -.'Functia nal Architefture
P"{C“ag‘? structure in #-£ +5Subsystem Point - Functional Contest
Windchill Modeler + +5Subsystem Point - Functional Entitief
+ +Subsystem Point - Functional Partitioning
4 £ +Subsystem Point - General Infos and Assumptions
¥ +Subsystem Point - Interfaces)
#- +5Subsystermn Point - Logical Viewpoint *r
¥ +Subsystem Point - Technical Viewpoint

Eu.ModSt.2027

Viewpoint, abstraction level and model view of the AM MBSE name are made evident in the header of the diagram representing a certain model view.

Eu.ModSt.2028

granularity of abstraction level AL2 (Subsystem Requirements).

Examples:
» The view “Functional Context” depicted in Figure 2029 describing a certain aspect of system element Subsystem Light Signal by a SysML use case diagram (uc) belongs to the “Functional Viewpoint” and has the granularity of

abstraction level AL1 (Subsystem Definition).
 The view “Functional Architecture” depicted in Figure 2029 describing a certain aspect of system element Subsystem Light Signal by a SysML internal block diagram (ibd) belongs to the “Functional Viewpoint” and has the

© EULYNX Partners

Page 41 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.2029

Figure 2029 Structure of the diagram headings

Diagram header

|uc [Package] Subsystem Light Signal - Functional Context[Functional Viewpeint - Subsystem Definition -Operation]

System element View Viewpoint bstraction level
AM MBSE: Instance System Element

*‘“Mﬁﬂﬂrl Viewpoi "'fugical Viewpoint Technical Viewpoint |CSP

ALl ’E
B 2

-]

3

=

o %lemem Viewpoint \bstractiun IeuN‘w
Y = =

N
ibd [Block] Subsystem Light Signal [Functional Viewpaint - Subsystem Requirements - Functional Arch'rteciure]J

Eu.ModSt.7845

As shown in Figure 7846 as an example, the packages in which the respective model elements are stored are to be displayed on the diagrams.

© EULYNX Partners

Page 42 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.7846

Figure 7846 Mapping the package structure onto the diagrams
& sFurktsonal requinemsnty ipecdicatian
« Suilviyatenn Pobl - Fianehonsl Viewpas
+[Pefendtion of timg valuet
+Subnyttem Paint - Funcissnal Archatecture
. D = Subiyiten Poasy h
+Siippyiem Point - Functsonal Contell
i1 +Swbsptem Point - Funchens! Entties l"-__
k- [+F_Congrol_Point_Machine_ Posion *,
ki [Tl - F_Otsceron_Lbility To_ Move »
1:- D'I-F_Cu:!n-e_bv\g‘rm:d_i'mn;_th—n.m
« 0 4F_Ctrserve Ovenafl Pot_Position
X o JRequinsmeent] L

]
= 1 +Sublystem Point - Functsompl Partitioning

Package structurein
Windchill Modeler

: [+[Reckege] Subsystem 'F'l:llr'il-; Fm:tmﬂalf'ﬂn-anlr:MFunc1laml Viewpaint - Subsystern Requirements]
+Eubsystein Point - Gerseral Infos and Apumptons g

*Subsysterh Point - Interfaces "
v'ﬁuh:fﬂxm‘i‘clrt - Logical Viewpoint

T
1.0
v Diagram
Sm-ﬂt‘Pﬂﬂ-FmMEﬂTMl‘.I

‘.

1

1_‘

T

Eu.ModSt.7707

In the following subsections 8.2.1, 8.2.2 and 8.2.3, the binding of requirements, the modelling pattern for interlocking systems supporting the EULYNX methodology and the basic structural model elements used are introduced.

Eu.ModSt.7065

8.2.1 Binding nature of the requirements and their structuring

Eu.ModSt.2030

The SUS and SIUS SysML specification models are stored in the repository of the modelling tool. Relevant artefacts of them are depicted in a traceable manner as surrogates in the requirement specification documents in the
form of atomic referenceable functional SUS or SUIS requirements.

Eu.ModSt.7060

Each of these atomised requirements is assigned a liability in the form of an object type. A distinction is made between the object types "Req", "Def", "Info" and "Head".

Eu.ModSt.7061

* "Req": This denotes a mandatory requirement.

Eu.ModSt.7062

¢ "Def": This denotes referenceable model elements that are used in the model-based creation of requirements

Eu.ModSt.7063

¢ "Info": This denotes additional information to help understand the specification. These objects do not specify any additional requirements.

Eu.ModSt.7064

» "Head": This denotes chapter headings.

Eu.ModSt.7937

Please note: State machines or several state machines linked together in a Functional Architecture define the totality of all functional requirements of an SUS or an SIUS in a coherent and consistent manner. State diagrams of
a corresponding state machine are marked with the object type “Req”. For the later design and implementation, it is not the description language SysML that is binding, but the domain-specific meaning expressed by it. The
specified behaviour can be converted into a vendor specific language but must retain the domain specific meaning describing the functional requirements. The specific model elements are additionally specified and defined by
object type “Def” to allow for traceability to supplier designs or test cases. The compliance of products to the specifications must be demonstrated by testing against EULYNX test cases, which are derived from the functionality
specified by the models.

Eu.ModSt.7896

Please note: The bindings assigned to each model view in this document can be adjusted on a project-specific basis. Thus, the bindings assigned in the specifications always apply.

Eu.ModSt.2031

A functional requirement consists of the respective SysML model element, for instance a SysML diagram, and if necessary, an additional extension of it.

© EULYNX Partners

Page 43 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.2032

For this reason, functional requirements have two attributes "Requirement Part 1" and "Requirement Part 2", which are shown in adjacent columns (see Figure 2).

Eu.ModSt.2033

In "Requirement Part 1" the respective SysML model element is listed and in "Requirement Part 2" the corresponding extension is shown. Column 'Type' defines the bindingness of the requirement and applies normally both to
"Requirement Part 1" and "Requirement Part 2".

Eu.ModSt.2034

In the case of requirements with a binding character "Req", in which the "Requirement Part 2" is provided with the heading "Information", the defined binding character "Req" only applies to "Requirement Part 1".

Eu.ModSt.2035

Figure 2: "Requirement Part 1" and "Requirement Part 2" as shown in the requirement specifications.
ID Type Requirement Part 1 Requirement Part 2
Eu.LS.4687 Req Cd_Indicate_Signal_Aspect Command (Cd) from the Subsystem
- Electronic Interlocking to the
Subsystem - Light Signal to indicate
the transmitted Signal Aspect.

Eu.ModSt.2036

Just this partition of requirements is applied throughout the entire requirement specification document regardless of whether a requirement has its origins in the SUS or SIUS model or it is for example a text-based nonfunctional
requirement manually added.

Eu.ModSt.7704

8.2.2 Modelling Pattern for interlocking systems

Eu.ModSt.220

Assuming that the stimulus-response behaviour of an overall interlocking system is immanently allocated to the infrastructure elements and encapsulated in each, the vertical slices of a Modelling Pattern for an overall
interlocking system as depicted in Figure 226, may be derived in form of a generic topological abstraction of the signalling infrastructure, i.e. following the geographical principle.

Eu.ModSt.221

This assumption has already been verified by the implementation of the all-relay interlocking in which the logic of routes is designed following the geographical principle (e.g. the Sp DRS 60 interlocking of Siemens AG as
described in [18]).

Eu.ModSt.222

The geographical principle considers the interconnection of distinct pieces of functionality, immanently encapsulated in the infrastructure elements (ISE), in the form of modules according to the signal layout plan (topological
abstraction of infrastructure).

Eu.ModSt.223

Hence, the functional structure within each vertical slice of the Modelling Pattern for an overall interlocking system may be derived from ISE specific behaviour and interconnected according to the signal layout plan (see Figure
226).

Eu.ModSt.224

Each of the vertical slices, i.e. each OE, represents the stimulus-response behaviour of a corresponding ISE.

Eu.ModSt.1237

The goal is to define the stimulus-response behaviour assigned to a vertical slice in a way that it fits into all valid variants of signal layout plans.

Eu.ModSt.1163

The OEs communicate as appropriate with one another, i.e. they exchange information.

Eu.ModSt.1164

Each information is sent out by a sender and received by one or multiple receivers. One of these is an OE; the other is an adjacent OE.

Eu.ModSt.1165

During its transmission, an information passes through a communication channel, which is the path through which the information travels from the sender to the receiver. This communication channel is assigned to the
connection domain (CD).

Eu.ModSt.1166

If the information is given directly by the sender to the receiver a communication channel may be abstracted without specifying any behaviour.

Eu.ModSt.1167

In other cases, the communication channel is significant because in it information may be delayed, lost, transformed into a format more convenient for the receiver or ordered in time. In these cases, the behaviour of the
communication channel is to be modelled explicitly.

© EULYNX Partners

Page 44 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.226

Figure 226 vertical slices of the Modelling Pattern for interlocking systems

Sta. B ISE Interlocking system boundary
'F:\._aln.ln oy J.LJ:.J:{
;:_:_-_:_-_'._'ﬂ:_-_:;:; / \‘\b |
], T I~ W2 <<4==— Fip
= Gl1.2 > 1-(@ Gl 1.2 F '2 - Gl 1.3 o N
, N1 _ %] D-Weg N1I/MN2 —=1o and from
Topography of infrastructure e ﬁ/j Sta. C
l Topological abstraction of infrastructure ¢
Stimulus-response behaviour assigned to a certain operational entity
2 F
- = Fe —f--:
] I I |
g | 1
g I |]
I I L |
I | LI |
I I 185
I | |
El | 1
II| |I, |I1
i I | | |]
I 1] a '
| I |
Stimulus-response behaviour assigned to the connection domain
(CD) between the operational entities
fEemmm e e Verlical Slices; ==-==ssommrmornams >
ISE: Infrastructure Element

Eu.ModSt.227

The layers of a Modelling Pattern for an overall interlocking system may be derived from architectural requirements based on the present architecture of an interlocking system [12] (see Figure 228):

e Command Control Layer (acronym: C),
o Safety Layer (acronym: S),
¢ Field Layer (acronym: F).

Eu.ModSt.1168

The OEs exchange information between the different architectural layers as appropriate.

Eu.ModSt.1169

Each information has a sender and one or multiple receivers. One of these is a certain architectural layer of an OE; the other is the underlying or overlying architectural layer of this OE.

Eu.ModSt.1170

In the same way as between the vertical slices described above each information passes through a communication channel assigned to the CD. It connects sender and receiver and may have a behaviour or not.

© EULYNX Partners

Page 45 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.228

Figure 228 Architectural layers of the Modelling Pattern for interlocking systems

Stimulus-response behaviour assigned to a certain architectural layer

F / 7
¥
I Command and
: Control Layer
]
E wn {€)
w 2g
Vv o E Connection domain .""_""_""_7/ ________ / R ey
>. © E Connectiondomain fi-____________- ek
o= s /
_ 3 !;
- i Safety Layer D/, ’
=]
55T (S) i
@ ¥,
2353 _ I —
S o & Connectiondomain | e s / _______ 1~ S !
(il £ £
. % Field Layer 5 R
!
| (F) it 2
i ff z’J

i

'
Stimulus-response behaviour assigned to the connection domain
between the architectural layers (e.g., communication protocol)

Eu.ModSt.231

The Modelling Pattern for interlocking systems, as depicted in principle in Figure 230, consists of vertical slices representing the required stimulus-response behaviour of corresponding OEs such as "Light Signal" or "Point" and
adjacent vertical slices in which the behaviour of the CD is to be specified.

Eu.ModSt. 1172

At the architectural layers C, S and F, the stimulus-response behaviour of the operational entities is put into the perspective of architectural requirements. The CD is to be specified at the underlying or overlying layer of the
architectural layer S, respectively.

Eu.ModSt.232

Each cell of the so-defined matrix represents a piece of required stimulus-response behaviour of the corresponding OE, put into the perspective of architectural requirements inherent in the respective architectural layer.

Eu.ModSt. 1292

This aforementioned behaviour is described in each cell by a FE or a number of FEs that are interconnected in a Functional Architecture.

Eu.ModSt.7705

A Functional Architecture divides the behaviour into Functional Entities, which communicate with each other via internal interfaces and with the environment via external interfaces.

Eu.ModSt.1294

A distinction is made between cells containing the behaviour assigned to OEs and those containing the behaviour of the CD.

Eu.ModSt.1293

The behaviour assigned to the CD specifies the communication channel (i.e. the global behaviour of the application protocol RCP) between cells containing the behaviour of adjacent OEs (see chapter 8.2.4 Interface centric
specification).

Eu.ModSt.7706

Channels without behaviour are represented by SysML connectors that connect the ports of the respective FEs.

© EULYNX Partners

Page 46 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.230

Figure 230 Principle of a Modelling Pattern for interlocking systems (simplified)

EOR/ P LS EOR/ Adjacent
sor |P =D Pl sor [P| iLs

.
:

cD |

CD

|
[
|
L]
L

=

B Behaviour assigned to operational entities
| = | Behaviour assigned to the CD (channel with behaviour)
wenes Channel without behaviour

CD: Connection domain
Examples of operational entities (OE):
SOR: Start of route, EOR: End of route, LS: Light signal, P: Point

Eu.ModSt.2091

8.2.3 Introduction of the basic structural model elements

Eu.ModSt.2092

8.2.3.1 Logical Structural Entity (LSE)

Eu.ModSt.2093

A Logical Structural Entity (block in turquoise, stereotyped as <<logical structural entity>>) represents a system element from a logical point of view. It encapsulates either one or more LSEs interconnected in the form of a
Logical Architecture or one or more FEs interconnected in the form of a Functional Architecture.

Eu.ModSt.1243

LSEs representing architectural entities are applied in order to structure a SUS according to architectural aspects aiming at a logical system architecture solution independent from any technological constraints. This kind of
partitioning results in a glass box view of the SUS.

Eu.ModSt.355

In a glass box specification the SUS is described as a collection of subsystems.

Eu.ModSt.205

LSEs that are not required to be further decomposed by other LSEs are referred to as atomic LSEs.

Eu.ModSt.1101

The stimulus-response behaviour of a non-atomic LSE is represented by the interactions between its decomposed subcomponents and the interactions of those subcomponents with the interfaces of the SUS. These interactions
are described by use case scenarios.

Eu.ModSt.203

Each atomic LSE encapsulates a piece of the "total" external visible stimulus-response behaviour of a SUS. This behaviour may be modularised by Functional Entities (black box view of a SUS).

Eu.ModSt.354

In a black box specification only the black box behaviour of the system to be specified is considered, i.e. only the external properties of the system are defined (externally visible input/output behaviour).

© EULYNX Partners

Page 47 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.2094

Figure 9 Logical Structural Entity

«block»
«logical structuralentity»
S

Eu.ModSt.2095

8.2.3.2 Functional Entity (FE)

Eu.ModSt.2096

A functional entity (green block, stereotyped with <<functional entity>>) encapsulates a certain portion of technology-independent system behaviour of a system element.

Eu.ModSt.1247

FEs representing behavioural entities are applied to modularise the stimulus-response behaviour of an atomic LSE aiming at reusability and mastering the complexity. This kind of partitioning does not have any impact on system
architectural aspects i.e. the atomic LSE remains a black box. A FE is not further decomposable.

Eu.ModSt.1102

The syntactic interface of a FE defines primarily the signatures of the in ports and the out ports and as appropriate the signatures of block properties and block operations. The semantic interface specifies the stimulus-response
behaviour, i.e. the chronological order of stimuli and responses using a state machine. The syntactic interface as well as the semantic interface of a FE are explained in detail in the chapters 8.5 and 8.6.

Eu.ModSt.2097

A functional entity additionally stereotyped with <<assumption>>represents a set of assumptions which are not functional requirements. Assumptions are mainly used to restrict the environment of a FE.

Eu.ModSt.2098

Figure 10 Functional Entity

Eu.ModSt.2099

8.2.3.3 Environmental Structural Entity (ESE)

Eu.ModSt.2100

In the environment of a SUS, there may be other system elements belonging to the same overall system (subsystems) with which the SUS in question has a communication relationship. These system elements are described by
logical structural entities. However, the SUS can also have a relationship with system elements that are outside the associated overall system. These system elements are described by environmental structural entities (grey
block, stereotyped with <<environmental structural entity>>).

Eu.ModSt.2101

Figure 11 Environmental Structural Entity
«block»
«environmental structural entity»
ESE

Eu.ModSt.2102

8.2.3.4 Technical Structural Entity (TSE) or Technical Functional Entity (TFE)

Eu.ModSt.2103

Technical Structural Entity:
A Technical Structural Entity (yellow-coloured SysML block stereotyped with <<technical structural entity>>) encapsulates one or more TSEs in the form of a Technical Architecture or one or more TFEs interconnected in the
form of a Technical Functional Architecture based on technical requirements (<<hardware>>: TSE representing a hardware artefact, <<software>>: TSE representing a software artefact).

Eu.ModSt.2104

Technical Functional Entity:
A Technical Functional Entity (yellow-coloured SysML block stereotyped with <<technical functional entity>>) represents a certain piece of technology-dependent behaviour based on technical requirements in a Technical
Functional Architecture supplementing or substituting the technology-independent behaviour defined by FEs.

© EULYNX Partners

Page 48 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.2105

Figure 12 Technical Structural Entity or Technical Functional Entity

«block»
«technical structural entity»
«hardware»
«software»
«technicalfunctional entity»

TSE or TFE

Eu.ModSt.2106

8.2.3.5 Information objects

Eu.ModSt.2107

Information objects are the objects that are exchanged between the respective communication partners via a communication relationship. They are formed from signals and values of the signals, the so-called attributes and are
made available or received at ports.

Eu.ModSt.2108

Ports are represented by small squares at the edge of a Functional Entity and represent the connections to the interfaces to other internal or external Functional Entities to which a communication relationship exists, or to
external interfaces. The port also indicates the arbitrary port name and interface type in the format "port name:interface type". Communication relationships between functional entities are assigned a reading direction. In the
case of ports, this is represented by the interface type being shown in conjugated form, i.e. by the symbol "~", on one side of the communication relationship.

Eu.ModSt.2109

8.2.4 Interface centric specification

Eu.ModSt.2112

By an interface centric approach, it is understood that the external visible stimulus-response behaviour (usage behaviour) of a SUS is largely described by the behaviours related to its interfaces. These behaviours are linked
together and supplemented by behaviour relevant for more than one interface by means of linking behaviour.

Eu.ModSt.2113

As depicted in Figure 2117, the models of the protocol stacks assigned to the communication interfaces are downscaled to the Process Data Interface protocols (PDI) defining the global PDI behaviours of the application layers
(e.g., SCI-AB PDI).

Eu.ModSt.2114

Global behaviour specifies the dependencies between the local PDI behaviours of the communication partners, that is the exchange of Process Data Units (PDU) between them in a chronological order.

Eu.ModSt.2115

The local PDI behaviours represent the behaviours of the communicating systems related to a certain interface.

Eu.ModSt.2116

The relation between local PDI behaviour and global PDI behaviour can be illustrated by a telephone call. The dialling is a local PDI behaviour at the initiator side, the ringing the associated local PDI behaviour at the partner
side. Only the global PDI behaviour defines that the dialling must precede the ringing (i.e., the chronological order).

Eu.ModSt.2117

Figure 2117 Global PDI behaviour

Global PDI behaviour

Application layer p JL
= SCI-XX.PDI sl
B Safety, retransmission and redundancy Eﬂs
o layer = RaSTA — SCI-AB ~
- L] [] (] []
ransport layer f PDU exchange
= UDP L \
ik SCI-AB PDI
/ \

Network layer / \

|(—Eu!||eu3§3-god

Data link layer

Physical layer

Local PDI behaviour
(i.e., behaviour related
to interface SCI-AB) on
the side of system B

Local PDI behaviour
(i.e., behaviour related
to interface SCI-AB) on
the side of system A

© EULYNX Partners

Page 49 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.2118

As the local PDI behaviours represent the interface behaviours of the communicating systems they may be specified in the model of the PDI.

Eu.ModSt.2119

As depicted in Figure 2120, in the model of a SUS such as System A, these local PDI behaviours are referenced and linked together (Linking Logic).

Eu.ModSt.2120

Figure 2120 Principle of interface centric specification

System A L1}

System C

System B 0 1]

=<reference== =<references= <<reference== =<reference==
L L m
3] =)
SCI-AB X v SCI-AC
H N [H] (] H N
SCI-AB PDI SCI-AC PDI

0 System behaviour
© Local PDI behaviour

@ Linking Logic
® Global PDI behaviour

Eu.ModSt.7952

8.2.5 Functional packages

Eu.ModSt.7953

The EULYNX specifications are to be divided into functional packages in the requirements management tool used. This is intended to enable Infrastructure Managers (IM) involved to select requirements in a targeted manner and
thus apply the specifications to the desired capabilities of their products.

Eu.ModSt.7954

There are two types of packages that relate to product capabilities:
* ‘Basic packages’, i.e. one or more packages, at least one of them must be implemented. It is allowed to combine and implement more than one ‘basic package’ in a product.
* ‘Optional package’, i.e. one or more packages that can be optionally implemented in addition to one or more basic packages.

Eu.ModSt.7955

For the evaluation if a requirement is valid or not depending on the selected functional packages of an IM, the basic packages have an "or" relation and optional packages have an "and" relation to everything else. I.e. from
mathematical point of view: ("Basic P1" or "Basic P2" or "Basic Pn") and "Option P1".

Eu.ModSt.7956

The functional packages are to be allocated to the requirements in the requirements management tool used. The practical implementation of the allocation depends on the capabilities of the tool.

Eu.ModSt.7957

The SysML specification model must be structured in such a way that the required functional packages can be separated from the overall functionality in order to enable clear allocation as described above.

Eu.ModSt.7958

For example, functional packages can be formed by encapsulating certain behaviours in functional entities, which are then used or not in the corresponding functional architecture as required.

Eu.ModSt.1509

8.3 Model views used to specify EULYNX subsystems

Eu.ModSt.2124

Model view "Functional Context": Use case Diagram (uc)
The model view "Functional Context" defines the services to be provided by the SUS in the form of use cases. Relationships are used to represent which actors interact with which SUS use case.

Eu.ModSt.2125

Model view "Use case scenario": Sequence Diagram (sd)
The model view "Use case scenario" describes the behaviour of the use cases defined in the model view "Functional Context" at the upper level of abstraction by means of one or more use case scenarios.

Eu.ModSt.2123

Model view "Logical Context": Block Definition Diagram (bdd)
The model view "Logical Context" describes at the top level

¢ the system/subsystem under specification (SUS),

¢ the actors in the environment interacting with the SUS and their quantity structure (multiplicities)
as well as the logical interfaces between the SUS and the actors.

© EULYNX Partners

Page 50 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.7708

Model view "Functional Partitioning": Block Definition Diagram (bdd)
The model view "Functional Partitioning" describes the refinement of the SUS by means of the FEs defined in the SIUS model view "Functional Partitioning", which represent the local behaviours of the PDI, as well as the FEs
specific to the SUS (linking behaviour according to chapter 8.2.4).

Eu.ModSt.2126

Model view "Functional Architecture”: Internal Block Diagram (ibd)
The model view "Functional Architecture" refines or completes the behaviour of an SUS defined in the model view "Use case scenarios". The behaviour of the SUS is divided into Functional Entities" (FE), which communicate with
each other via internal interfaces and with the environment via external interfaces. The FEs are defined in model view "Functional Partitioning".

Eu.ModSt.7720

Model view "Technical Functional Architecture": Internal Block Diagram (ibd)

The model view "Technical Functional Architecture" supplements the behaviour described in the model view "Functional Architecture", which is independent of technology, with behavioural components derived from technical
requirements. Either the entire behaviour can be described in a technical context or a mixture of functional and technical aspects.

Eu.ModSt.2127

Model views "Functional Entity" and "Technical Functional Entity": Internal Block Diagram (ibd) and State Machine (stm)

The model view "Functional Entity" encapsulates a subset of technology-independent functional requirements and the model view "Technical Functional Entity" a subset of technology-dependent functional requirements of a SUS
in the form of a function module. It delimits the function module from its environment and defines the inputs and outputs. In the discrete case, the behaviour of the FE is described by means of state machines. In this, the
binding functional requirements are specified in the form of state transitions. Both model views are described in the separate chapters 8.5 and 8.6.

Eu.ModSt.2128

Figure 2129 shows the engineering path of the model views used to specify a SUS considering the Functional Viewpoint, the Logical Viewpoint and the Technical Viewpoint. It describes the context of the model views, with the
arrows indicating which model views are developed from which. During the development of the model, the model views "Functional Context" (the Use Cases), "Use case scenarios" and "Logical Context" are created. These
model views form the basis for the description of the model views "Functional Partitioning", "Functional Architecture" and "Functional Entity". For the creation of the model view "Functional Partitioning", the FEs defined in the
model view "Functional Partitioning" of the SIUS are required (b: see Figure 2244 in chapter 8.4). In case technical requirements are to be considered, the model views "Technical Functional Architecture" and "Technical
Functional Entity" are created based on the model view "Functional Architecture".

Eu.ModSt.2129

Figure 2129 Engineering path to specify a EULYNX subsystem

AM MBSE: Engineering path SUS

Logical Viewpoint |Technical Viewpoint \ CSP

 f—
— Logical Context (Block definition diagram)
@ - e
. \ R —
L * -
2 - L .‘ ™ - L= " - - -E.
ALl = - =
‘ . ——sion; i) = |
= - ' =
Use case scenario (Sequence diagram) :{) Q
== ~(a
Functional Context (Use case diagram) Y . r 3 v
. —Engineering path SIUS " o
| P— " "‘ 2 s - n =
___________ —— . P TFE (Intemal block diagam) = m
L | = ol I = 7,
J h] ’ -
,___.___f. e) - == { i : z
N | R T . «” . —r— % - o
{ ' . - ; N 4 Technical Functional Architecture *
A L2 . FE (Intemal block diagram) Y s 3 {Intemal block diagram) "'l [
i Functional Architecture * " - - =5 \
(intemal block diagram) /| — == v
e “Functional Partitioning Lo e
. - =
Behaviour of FE ™ (Block definition diagram) . . =
{e.g., State machine diagram) v -
B | P -——= Behaviour of TFE
__ {e.g., State machine diagram)
i

Eu.ModSt.3550

8.3.1 Model View "Functional Context" of a SUS (AL1) - Description

Eu.ModSt.3495

The model view "Functional Context" as shown in Figure 3496 defines the services to be provided by the SUS in the form of use cases. On one or more SysML use case diagrams all subsystem use cases and their relationships to
the SUS environment and between the subsystem use cases themselves are depicted.

© EULYNX Partners

Page 51 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.3497

In the use case diagrams, the boundary (2) of the SUS (1) is shown as a frame with a dotted line.

Eu.ModSt.3498

The use cases of the SUS are shown as ellipses within the frame and have the name of the respective use case (3).

Eu.ModSt.3499

A use case describes a service a SUS provides to its environment and is specified by one or more interaction scenarios (model view "Use case scenario").

Eu.ModSt.3500

Use cases are connected by interaction connectors (7) to those actors in the SUS environment with whom they interact. An actor may represent another system (5) or a person (6).

Eu.ModSt.3501

Use cases may be connected to each other through include relationships (4), which are represented by arrows with a dashed line stereotyped with <<include>>. Such a relationship indicates that the interaction scenarios of the
use case at the arrowhead are included in the use case at the other end of the arrow. These included use cases encapsulate services that occur more than once, for example, and can also be included in other use cases.

Eu.ModSt.3496

Figure 3496 Example of SUS model view "Functional Context"

uc [Package] Subsystem Light Signal - Functional Context [Functional Viewpoint - Subsystem Definition - Initialisation]

Electronic

Subsystem - & X
Interocking h

|
> gincludes
S

.

Train driver

®

Subsystem -
Maintenance
and Data
Management

Eu.ModSt.7711

8.3.2 Model View "Functional Context' of a SUS (AL1) - Modelling rules

Eu.ModSt.7713

8.3.2.1 SysML Diagram

Eu.ModSt.7715

UseCase diagram (uc): depicts the model view "Functional Context" (one or more use case diagrams classified by domain motivated use case groups such as Start-up, Operation, Maintenance and so on).

© EULYNX Partners

Page 52 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.7716

Name of the Diagram:

uc/Package]<><System Name><>-<>Functional Context<>[Functional Viewpoint<>-<>Subsystem Definition<>-<><Use case group><>DiaNo].

Eu.ModSt.7717

Example:
uc[Package] Subsystem Light signal - Functional Context [Functional Viewpoint - Subsystem Definition - Initialization]

Eu.ModSt.1197

<Use case group> := <Main use case group><>-<><Sub use case group>

Eu.ModSt.1949

<Main use case group> := Broader term of the domain motivated group of services defined on the use case diagram

Eu.ModSt.1950

<Sub use case group> := Broader term of the subdomain motivated group of services defined on the use case diagram

Eu.ModSt.1199

Examples:
Operation
Operation - Direction

Eu.ModSt. 1198

<DiaNo> := Number of use case diagram (Natural number starting with 1); optional to use

Eu.ModSt.1200

<Name of Frame Box> := <System block signature>

Eu.ModSt.1201

<Name of use case> := <UC designator>:<><Service to be described>

Eu.ModSt.1952

<UC designator> := <UC type>UC<DiaNo of uc>.<UCNo>

Eu.ModSt.1763

<UC type> := <Abbr. System type>

Eu.ModSt.1202

<UCNo> := Number of UseCase (Natural number).

Eu.ModSt.1203

<Service to be described> := The name of the service required by the system environment.

Eu.ModSt.1204

Example:
LS_UC1.4: Establish initial state of outputs

Eu.ModSt.1205

<Name of UseCase> (generic UseCase) := <Gen UC designator>:<><Service to be described>

Eu.ModSt.1953

<Gen UC designator> := <Gen UC type>UC<DiaNo of uc>.<UCNo>

Eu.ModSt.1951

<Gen UC type> := Gen | <Abbr. System group>

Eu.ModSt.1955

<Abbr. System group> := Freely selectable designator such as EfeS (EULYNX field element system) or AdjS (adjacent system)

Eu.ModSt.1206

Example:
EfeSUC1.2: Establish PDI connection
GenUC1.4: Establish PDI connection

Eu.ModSt.728

8.3.2.2 Model elements

Eu.ModSt.926

The model elements basically used to describe the model view "Functional Context" are depicted in Figure 746.

© EULYNX Partners

Page 53 of 119

Modelling Standard

ID Requirement

Eu.ModSt.746
Figure 746 Basically used model elements of model view "Functional Context"

uc <Diagramheading= Frame Box

Interaction | <System block signature= !
relationship

Generalisation
relationship

<Name of
\ UseCase>

Include
relationship

I ginclude »
<Name of

(specialsed)
UseCase >

UseCase image <Name of (included)

UseCase=

|
|
|
|
|
|
<Actor name= |
|
|
|
|
|
|
|
|

Eu.ModSt.729 Frame Box: Represents the boundary of the SUS the use cases are allocated to.

Eu.ModSt.731 UseCase image: Depicts a UseCase on the use case diagram.

Eu.ModSt.1714 It may be project-specifically determined that for each use case one constraint may be added for each of the following definitions:
e the Purpose,

e the Primary Actor and

e the Secondary Actor.

Eu.ModSt.1715 It may be project-specifically determined that the purpose of the UseCase is to be written in accordance with the following pattern:
This UseCase describes the <><UseCase Action><>of<><UseCase Object><>by<><UC Actor/s><><to do/ for doing><><summary of UseCase content>.
<Optional free text description to add details about UseCase content>.

Eu.ModSt. 1709 Actor: As stated earlier, an actor specifies a role played by user or any other system that interacts with the system. Cockburn [22] distinguishes between primary and secondary actors.

Eu.ModSt.1710 Primary Actor: The primary actor of a use case is the stakeholder that calls on the system to deliver one of its services. It has a goal with respect to the system — one that can be satisfied by its operation. The primary actor is
often, but not always, the actor who triggers the use case.

Eu.ModSt.1711 Secondary Actor: The secondary actor of a use case is a stakeholder that the system needs assistance from to achieve the primary actor’s goal.

Eu.ModSt.1712 In other words, secondary actors may or may not have goals that they expect to be satisfied by the use case, the primary actor always has a goal, and the use case exists to satisfy the primary actor.

Eu.ModSt.744 Interaction relationship: Connects the actors participating in the system use cases to the use case images (see Figure 746).

Eu.ModSt.745 The interaction relationship is an abstract representation of the exchange of messages temporally ordered (information flow from and to the system) within the scope of the corresponding SUS use case.

Eu.ModSt.1713 It may be project-specifically determined that only the primary actors participating in the SUS use cases are connected to the use case images. Secondary actors may not be connected for the benefit of the diagram’s
readability.

© EULYNX Partners Page 54 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.1207

Generalisation relationship: use cases can be classified using the standard SysML generalisation relationship. The meaning of classification is similar to that for other classifiable model elements. One implication, for example,
is that the use case scenarios for the general use case are also use case scenarios of the specialised use case. It also means that the actors associated with a specialised use case can also participate in use case scenarios
described by a general use case. Classification of use cases is shown using the standard SysML generalisation symbol (see Fig. 746).

Eu.ModSt.747

Include relationship: An include relationship between two UseCases means that the sequence of behaviour described in the included use case is included in the sequence of the base (including) use case.

Eu.ModSt.748

Please note: Include relationships are only to be used if absolutely necessary, whereas extends relationships are not to be used at all.

Eu.ModSt.749

The included use case may be a primary use case as well as a secondary use case.

Eu.ModSt.861

When including a use case, this use case shall be named in the description of the sequence.

Eu.ModSt.750

A primary use case is a complete UseCase having a domain trigger, a result, and a primary actor.

Eu.ModSt.751

A secondary use case is an incomplete use case fragment. This is a "piece" of use case that doesn't fulfil at least one of the criteria of a primary use case. It is modelled for example if its flow is part of several (primary) use
cases. This allows to avoid redundant descriptions or enables the structured merge of specific behaviour and generic behaviour. "Include" creates a relationship between primary and secondary use cases.

Eu.ModSt.752

In the example depicted in Figure 3496, the system-specific use case "LS_UC1.3:Report status" is included in the generic UseCase " EfeSUC1.2: Establish PDI connection".

Eu.ModSt.7075

8.3.2.3 Binding (see chapter 8.2.1)

Eu.ModSt.7754

Diagram of model view "Functional Context" has an "Info" binding.

Eu.ModSt.7077

Use Case has an "Info' binding if it is further specified in a refined model view.

Eu.ModSt.7894

Use Case has a "Req" binding if it is not further specified in a refined model view.

Eu.ModSt.364

8.3.3 Model View "Use case scenario'’ of a SUS (AL1) - Description

Eu.ModSt.3503

The model view "Use case scenario" as shown in Figure 3504 defines the behaviour of the use cases defined in the model view "Functional Context" by means of one or more use case scenarios at the upper level of abstraction.
These use case scenarios describe the interaction between the SUS and the actors in the SUS environment using SysML sequence diagrams.

Eu.ModSt.3506

Use case name (1)
Name of the use case to which the interaction scenario belongs (e.g., LS_UC2.1: Indicate signal aspect).

Eu.ModSt.3508

Use case scenario name (2)
The use case scenario name is the name of a possible information flow (shown as a sequence diagram) within a use case (Main Success Scenario or Alternative Scenario).

Eu.ModSt.3510

Preconditions (3)
Preconditions are conditions that must be met and known to the actor triggering the stimulus for the scenario to start (see chapter 8.1.2.1.3).

Eu.ModSt.3512

Interaction (4)
An interaction consists of a sequence of steps, starting with a stimulus (prefixed by a dash "-"), a validation, possibly a state change and a reaction. In addition, combined fragments may be included. A use case scenario can
consist of one or more interactions. The structure of an interaction follows the principle of the Action Block Scheme as described in chapter 8.1.2.1.2.

Eu.ModSt.3514

Sequences and information flows (5)

Sequences consist of a text part describing the sequence and, in the case of an information flow, a graphical representation of the information flow in the form of arrows between the lifelines (11). In the text part, elements of
the model are shown in blue and explanatory text in black. In the graphical part, the corresponding exchange of information objects is shown accordingly. Here in the example (sequence 1), the information object
"Cd_Indicate_Signal_Aspect" is sent from the "Subsystem Electronic Interlocking" to "Subsystem Light_Signal". As it is a stimulus it is prefixed by a dash "-" in the text part of the sequence. In sequence 2, the validation of the
information object in the "Subsystem Light Signal" is described in the text part, without representation in the graphical part.

Eu.ModSt.3516

Postconditions (6)
Postconditions are conditions for which changes have resulted from the sequence diagram. Conditions that have already been mentioned in the preconditions are not listed here.

Eu.ModSt.3518

Actors (7)
Actors are systems (e.g., Subsystem Electronic Interlocking) or persons that interact with the SUS, i.e. trigger a stimulus and/or receive a response.

Eu.ModSt.3520

System under specification and System boundary (8)
The boundary between the system under specification (SUS) and the actors is symbolised by a thick grey bar. The SUS (9) is located to the right of the grey bar and the actors to the left.

Eu.ModSt.3522

Lifelines (10)
Lifelines represent the time axis of the SUS and the actors, with the time running from top to bottom.

© EULYNX Partners

Page 55 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.3504

Figure 3504 Example of SUS model view "Use case scenario"

LS_UC2.1: Indicate signal aspect @ 9 N t @

Subsystem - Electronic Interlocking |Train driver
|

M ain Success Scenario: Indicate signal aspect [LS SD 2.1.1] 2
Precondition:

The Subsystem Light Signal is in the state OPERATIOMAL.
Interaction 2.1.1.A:

(B

I
|

Cd_Indicate_Signal_Aspect ’u

1. - The Subsystem Light Signal receives from the Subsystem -
Electronic Interlocking the Signal Aspect to be indicated.

2. The commanded Signal Aspect can be indicated uniformly
across all Lamps in the currently set luminosity for the entire

Signal Aspect.

3. The Subsystem Light Signal indicates the commanded Signal
Aspect in the currently set Luminosity.

I

I

I

I

}

I

I

I

I

[

|
4. The Subsystem Light Signal notifies the Subsystem - LJ‘

[

I

Msg Indicated Signal Aspect
Electronic Interocking of the indicated Signal Aspect. 6 R

|
|
|
|
|
|
|
|

I.ﬂ"

U‘ Signal_Aspect

|
Postcondition: :
|

I
I
1
[
I
I
I
I
|

The Subsystem Light Signal indicates the commanded Signal @
Aspect in the currently set Luminosity

Eu.ModSt.756

8.3.4 Model View "Use case scenario" of a SUS (AL1) - Modelling rules

Eu.ModSt.757

8.3.4.1 SysML diagram

Eu.ModSt.758

Sequence Diagram:
A sequence diagram generally shows a stimulus-response behaviour, focusing on the temporal sequence of messages.

Eu.ModSt.759

A sequence diagram depicting a use case scenario shows a specific sequence of messages, i.e. it represents a possible variant of a SUS use case.

Eu.ModSt.760

In contrast to the complete stimulus-response behaviour of a SUS use case, described using a state machine, a use case scenario only represents a "flash light" view of this behaviour.

Eu.ModSt.761

There are two variants of use case scenario layouts:
e Variant 1: Use case scenario with frame (Figure 1690) and
e Variant 2: Use case scenario without frame (Figure 6976).

Eu.ModSt. 1693

It has to be project-specifically determined which variant to apply. The example scenarios in this document are depicted according to variant 2.

© EULYNX Partners

Page 56 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.1690

Figure 1690 Variant 1: Use case scenario with frame

sd LS UC2.1 -Main Success Scenario [LS SD 2.lj ;Y; i

: - -El Interlock Train driv
<Diagram heading part 1> Subsystem - E ecltmruc nterloc rng] [rain drl'-fer| Mm@

: . : : : <Scenario frame>
Main Success Scenario: Indicate signal aspect of—— -::D]ag[am head]ng pa[t 2:-
Precondition:

The Subsystem Light Signal is in the state OPERATIOMNAL.

Interaction 2.1.1.A:

1. - The Subsystem Light Signal receives from the Subsystem -

Cd Indicate Signal Aspect
Electronic Interlocking the Signal Aspect to be indicated. e —oignal_Aspe ’u

2. The commanded Signal Aspect can be indicated uniformly
across all Lamps in the currently set luminosity for the entire

Signal Aspect.
3. The Subsystem Light Signal indicates the commanded Signal Signal_Aspect
Aspect in the currently set Luminosity. g

Electronic Interlocking of the indicated Signal Aspect.
Postcondition:

The Subsystem Light Signal indicates the commanded Signal

[

[

[

I

[

I

[

[

[

»
4, The Subsystem Light Signal notifies the Subsy stem - Ll‘

[
Aspect in the currently set Luminosity '

I
[
!
] I
| Msg_Indicated Signal Aspect |
I I
I |
I I
|

Eu.ModSt.1691

Variant 1: Diagram heading part 1
sd<><Abbr. System type>UC<DiaNo of UCD>.<UCNo>-<Scenario type><> [<Abbr. System ID><>SD<><DiaNo of UCD>.<UCNo>.<DiaNo of SD>]

Eu.ModSt.1695

Variant 1: Diagram heading part 2
<Scenario type>:<> <Scenario name>

Eu.ModSt.766

A use case may be defined by one or more use case scenarios in the following compositions:
- one Main Success Scenario and any number of Alternative Scenarios,

- only one Main Success Scenario,

- any number of Alternative Scenarios without a Main Success Scenario.

Eu.ModSt.1698

Examples:
sd SubSUC2.1-Main Success Scenario [SubS LS SD 2.1.1]
Main Success Scenario: Indicate signal aspect

sd SubSUC2.2-Alternative Scenario [SubS LS SD 2.2.2]
Alternative Scenario: Illuminant failure

Eu.ModSt.1696

Variant 1: Diagram heading part 1 (generic UseCase Scenario)
sd<><Gen UC type>UC<DiaNo of UCD>.<UCNo>-<Scenario type><>[<Gen UC type><>SD<> <DiaNo of UCD>.<UCNo>.<DiaNo of SD>]

Eu.ModSt. 1697

Variant 1: Diagram heading part 2 (generic UseCase Scenario)
<Scenario type>:<> <Scenario name>

Eu.ModSt.1699

Example:
sd GenUC1.2-Main Success Scenario [Gen SD 1.2.1]
Main Success Scenario: Establish PDI connection

sd EfeSUC1.2-Main Success Scenario [EfeS SD 1.2.1]
Main Success Scenario: Establish PDI connection

© EULYNX Partners

Page 57 of 119

Modelling Standard

ID Requirement

Eu.ModSt.6976
Figure 6976 Variant 2: Use case scenario without frame

LS_UC2.1: Indicate signal aspect —<Name of use case> & X

|3ut:55;31em - Electronic InIErICICI-;lr'Ig| Train driver] Mmm
1 o
Main Success Scenario: Indicate signal aspect [LS SD 2.1.1] ‘\\ |

Precondition: . .
e <Diagram héadmg}
The Subsystem Light Signal is in the state OPERATIOMAL.

|
|
I
|
Interaction 2.1.1.A: |

1. - The Subsystem Light Signal receives from the Subsystem -

Cd Indicate Signal Aspect
Electronic Interlocking the Signal Aspect to be indicated. - i ’u

2. The commanded Signal Aspect can be indicated uniformly
across all Lamps in the currently set luminosity for the entire

Signal Aspect.

3. The Subsystem Light Signal indicates the commanded Signal
Aspect in the currently set Luminosity.

|
I
|
|
|
|
|
|
4. The Subsystem Light Signa notifies the Subsy stem - u‘
|
|

Electronic Interlocking of the indicated Signal Aspect.
Postcondition:

The Subsystem Light Signal indicates the commanded Signal

U‘ Signal_Aspect
|
|
|
Aspect in the currently set Luminosity. !

I
I
|
I
Msg Indicated Signal Aspect |
I
|
I
I

Eu.ModSt.6977 Variant 2: Diagram heading
<Scenario type>:<><Scenario name><> [<Abbr. System ID><>SD<> <DiaNo of UCD>.<UCNo>.<DiaNo of SD>]

Eu.ModSt.6978 Examples:
Main Success Scenario: Indicate signal aspect [SubS LS SD 2.1.1]
Alternative Scenario: Illuminant failure [SubS LS SD 2.1.2]

Eu.ModSt.5269 Variant 2: Diagram heading (generic UseCase Scenario)
<Scenario type>:<><Scenario name><> [<Gen UC type><>SD<> <DialNo of UCD>.<UCNo>.<DiaNo of SD>]

Eu.ModSt.3562 Example:
Main Success Scenario: Establish PDI connection [Gen SD 1.2.1]
Main Success Scenario: Establish PDI connection [AdjS SD 1.2.1]

Eu.ModSt.765 <Scenario type> := "Main Success Scenario" | "Alternative Scenario"
where the Main Success Scenario specifies the service to be provided when nothing goes wrong, and the Alternative Scenario describes deviations from the Main Success Scenario.

Eu.ModSt.1211 <Scenario name> := Unique designation of the scenario

Eu.ModSt.1210 <DiaNo of SD> := Number of sequence diagram (Natural number starting with 1).

Eu.ModSt. 1220 <Interaction heading> := Interaction <Name of interaction>:

Eu.ModSt.791 <Name of Interaction> := <DiaNo of UCD>.<UCNo>.<DiaNo of SD>.<IId>

Eu.ModSt.792 <IId> := Id of an Interaction (Capital letters starting with "A"; if there are more than one Interactions on a scenario, the letter rises along the alphabet)

© EULYNX Partners Page 58 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.793

Example:
Interaction 2.1.1.A:
1.-..

2. ...

Interaction 2.1.1.B:
3.-..

4. ...

Eu.ModSt.772

8.3.4.2 SysML model elements

Eu.ModSt.762

The model elements used to describe the model view "Use case scenario" and the structural principle are depicted in Figure 763.

Eu.ModSt.763

Figure 763 Model elements and structural principle of a use case scenario

<Name of UseCase> i System System

<Diagram heading> Actors - boundary kSystem blocksignature>]
Description area i :

Precondition:

Condition on the system state that is expected to be
known by the initiator ofthe stimulus triggering the first
interaction.

<Interaction heading>

Stimulus

" f:JrLZl Flow names=

1. - The <System block signature> receives a stimulus (for
example fom an actor).

2. The <System block signatwe> validates the stimulus
acoording to the condition on the system state that 5 not
expacted to be known by the initiater ofthe stimulus .

Response

r

3. The <System block signature> alters its internal state. »:-.":;";.| Elow D

|

|

|

L

|

|

|

I
4. The <System block signature> responds with the result. i*
<Interaction heading> I

5. - The <System block signature> receives a stimulus (for
example an intras ys tem event) L - Stimulus

<+ —— Lifeline

6. The <System block signature> validates the stimulus
acoording to the condition on the system state that 5 not I
expected to be known by the initiater of the stimulus | <Name of UseCase=
ke

| '- '

<I0 Flow name=

7. The <System block signature> calls an included |
Us eCase. <<incude>> <Name of Us eCas e>

8. The <Sy=tem block signature> alters its internal state.

i
8. The <System block signature> res ponds with the U‘)

\ W
res ult. \ g

—-Asappropriate further interactions -— | Include

Postcondition: Prohe Response
Peos teondition of the UseCes & Seanans (condit bns which |
deviate from the preconditions) I |

Eu.ModSt.773

As depicted in Fig. 763, a sequence diagram describing a UseCase scenario consists of the following vertical segments:
- Description area,

- Lifelines of actors,

- System boundary,

- Lifeline of the system.

Eu.ModSt.927

Description area:
In the vertical segment "Description area" the action steps of the scenario are to be described.

Eu.ModSt.1278

Lifelines:
The principal structural feature a of a scenario is the lifeline. A lifeline represents the relevant lifetime of a property of the scenario's owning block, which will be either a SysMI part or a SysML reference property. A part can be
typed by an actor, which enables actors to participate in scenarios as well.

© EULYNX Partners

Page 59 of 119

Modelling Standard

ID Requirement

Eu.ModSt.928 Lifelines of actors:
In the vertical segment Lifelines of actors, the actors of the system are to be arranged. This section may be empty.

Eu.ModSt.774 Lifeline of the system:
The vertical segment Lifeline of the system is represented by an instance of the block describing the structure of the system such as "Subsystem Light Signal".

Eu.ModSt.775 Please note: The instance of the block has to be created once and used in all corresponding sequence diagrams.

Eu.ModSt.776 Architectural boundary:
The architectural boundary (dashed vertical line depicted as default at any sequence diagram) is to be arranged to the right of the vertical segment "System" and overlaid by a white-coloured note.

Eu.ModSt.777 A Use case scenario of a primary Use Case is to be structured horizontally as depicted in Fig. 763.

Eu.ModSt.778 Precondition:
After the declaration of the diagram heading, the preconditions are to be stated.

Eu.ModSt.1705 General rules for pre- and postconditions:
Pre-and postconditions are to be defined in the following order:
1. States (if defined) of objects involved in the sequence,
2. States of timers (e.g. The Subsystem — Point monitors the Timevalue “Con_tmax_Point_Operation”) involved in the sequence,
3. All other conditions of objects, which are required before proceeding the sequence (in case of preconditions) or which are achieved after completing the sequence.

Eu.ModSt.1706 When objects are named in pre-or postconditions, the following order is to be followed:
1. Itinerary

2. Train Unit / Infrastructure Element

3. Vehicle

Eu.ModSt.1707 When nested states of objects (refer to ABB.4.250) are named in pre-or postconditions, all nested and parent states are to be nhamed.

Eu.ModSt.1708 With the aforementioned rules, the pre-and postconditions are to be structured as follows:
<Pre/Post>conditions

<Object 1 is in state 1>.

<Object 1 is in state n>.

<Object 2 is in state 1>.

<Object 2 is in state n>.

<Object m is in state n>.

<Conditions 1>.

<Conditions n>.

Eu.ModSt.779 Preconditions denote what must be true before the UseCase runs. The preconditions are stated at this place if they are expected to be known by the initiator of the stimulus of the first interaction of the UseCase.

Eu.ModSt.780 The preconditions are to be structured as follows:
Precondition:
<Precondition 1>.

<Precondition n>.

Eu.ModSt.782 If there are no preconditions to be stated, three hyphens are to be depicted instead of them:
Precondition:

Eu.ModSt.786 There may be cases when a precondition is not expected to be known by the initiator of the stimulus. In those cases, the precondition is to be described as validation condition at action step 2 within the first interaction
according to the action block schema (see chapter 8.1.2.1.2).

Eu.ModSt.787 If stated at this place, alternative scenarios may be derived from that precondition.

© EULYNX Partners Page 60 of 119

Modelling Standard

ID Requirement

Eu.ModSt.789 The preconditions are followed by the occurrence specifications. A lifeline is related to an ordered list of occurrence specifications that describe what can happen to the instance (e.g. Subsystem Light Signal) represented by the
lifeline during the execution of the scenario.

Eu.ModSt.1279 Those occurrences are specified by action steps structured by one or more interactions according to the structure depicted in Figure 763.

Eu.ModSt.790 Interaction:

Eu.ModSt.794 An interaction is to be invoked at its first action step

- by a stimulus from an actor of the system,

- by a timed trigger,

- by an internal trigger (that is, an event that occurs in the system) or
- when entering or leaving a system state.

Eu.ModSt.795 The invoking of an interaction by a stimulus from an actor of the system is to be described as an information flow from the actor in the system environment to the system as depicted in Figure 796.

Eu.ModSt.797 The response of the system to an actor (primary actor or secondary actor) is to be described as an information flow from the system to the actor in the system environment as depicted in Figure 796.

Eu.ModSt.796
Figure 796 Information flow across the system boundary

X X

subS | |Driver SubSLS

EIL
. i '
|

| | Stimulus invoked by
| I the actor SubS EIL

| I Cd_Indicate_Signal_aspect |

Signal_aspect

I
| I](Msg_lnd$ated_s ignal_aspect

I X i

Responses to the |
actors Driver and |

' ' SubS EIL
Eu.ModSt.799 The information flows are to be defined using SysML Item Flows or SysML signal events (in the following referred to as IO Flows) .
Eu.ModSt.800 The data types of the SysML Item Flows are to be hidden on the sequence diagram unless there is a project-specific commitment.

Eu.ModSt.7941 When using SysML signal events as 10 Flows, the parameter values can also be displayed.
Example: Msg_TVPS_Occupancy_Status(Vacant, Unable to be forced to clear, Command from EIL).

Eu.ModSt.888 An IO Flow which represents a permanent information flow is only to be depicted on the diagram as demonstrated in Figure 932 if this information flow has changed.

© EULYNX Partners Page 61 of 119

Modelling Standard

ID Requirement

Eu.ModSt.932
Figure 932 Stimulus changes permanent information flow

SysUC1.1: Switch on the light i i

Main Success Scenario: Switch on the light Button Light
[Sys LC 5D 1.1.1] -

Precondition:

Interaction 1.1.1.A:

1. = The Light Controller receives the request
button_pressed from the actor Button.

2. The Light Controller evaluates that the request is
valid because it is in state OFF.

3. The Light Controller changes to state ON.
4. The Light Controller switches on the Light.

X

Postcondition:
The Light Controller is in state OM.

|
|
light_on |
|
|
|

"

Eu.ModSt.931 In the example depicted in Figure 930, the stimulus "button_pressed" does not change the permanent information flow "light_on". Thus, the I0 Flow "light_on" is not depicted on the diagram.

Eu.ModSt.930
Figure 930 Stimulus does not change permanent information flow

SysUC1.1: Switch on the light i ,‘j:

Alternative Scenario: The light is already Light Sis LC
switched on [Sys LC SD 1.1.2] =

Precondition: |

Interaction 1.1.2.A:

from the actor Button,
|
|

2. The Sy s LC evaluates that the request is not valid
because it is already in state OMN.

I I
I I
[I
1. = The Sys LC receives the request button_pressed | | button_pressed ’|_|
[[
I I
[[

3. The Sys LC keeps the Light being switched on.
Postcondition: No 10 Flow because the permanent
The Sys LC is in state ON. information flow has not changed

Eu.ModSt. 1267 Representing time on a sequence diagram:
In a sequence diagram, time progresses vertically down the diagram and occurrences on a lifeline are correspondingly ordered in time. In addition, the send occurrence and receive occurrence for a single message are also
ordered in time.

Eu.ModSt.1274 Time observation and duration observation:
In addition to relative ordering in time, time can be represented explicitly on sequence diagrams. A time observation refers to an instant in time corresponding to the occurrence of some event during the execution of the
scenario, and a duration observation refers to the time taken between two instants during the execution of the scenario.

Eu.ModSt.1268 Time constraint and duration constraint:

A time constraint and a duration constraint can use observations to express constraints involving the values of those observations. A time constraint identifies a constraint that applies to a single occurrence on the sequence
diagram. A duration constraint identifies two occurrences, called start and end occurrences, and expresses a constraint on the duration between them. A duration constraint can apply to any element deemed to have duration,
such as a message or an execution, in which case the constraint applies between the occurrences that bracket the element's duration.

Eu.ModSt. 1269 A time constraint is shown using a standard constraint expression in braces attached by a dashed line to the constrained occurrence.

Eu.ModSt.1270 A duration constraint is shown by a double-headed arrow between the two constrained occurrences with the constraint floating near it, also expressed in standard constraint notation (i.e. in braces). A duration constraint may
also be shown as a standard constraint floating close to an element such as a message.

© EULYNX Partners Page 62 of 119

Modelling Standard

ID

Requirement

Eu.ModSt. 1277

Observations are shown in a way similar to constraints, but instead of an expression in braces, an observation has the name of the observation followed by an equal sign and then an expression indicating how the value for the
observation is obtained.

Eu.ModSt. 1275

An example of representing time on a sequence diagram is shown in the scenario depicted in Figure 1272. A time observation, t, is taken at the point when the button is pressed using the expression "t = now". The time
constraint {t + 1 ms..t + 2 ms} indicates that the message receipt must occur between 1 ms and 2 ms after t. The total time taken between pressing the button and switching on the light should be not more than 10 ms, as
indicated by the duration constraint between action step 1 and action step 4. The duration between pressing the button and receiving the corresponding message is observed via a duration observation d, and there is a
constraint ({d..d*2}) on the response "light_on" to not exceed 2 times the duration d.

Eu.ModSt.7940

Please note: always use “<=" instead of “<".

Eu.ModSt. 1272

Figure 1272 Example of representing time on a sequence diagram

9

SysUC1.1: Switch on the light A —T: . .

Altemative Scenario: Representing [Button Light (KT CORSIT: s LC|
time [Sys LC SD 1.1.4] : : -

Precondition: time observatibn {t +1 ms..t+2 ms})

I't= now
Interaction 1.1.1.A: :

-~

button_pressed ~ _

P .

Postcondition:
The Sys LC is in state ON.

|
|
|
|
1. - The Sys LC receives the request : ' G G
button_pressed from the actor : " .
Button. : duration observation
2. The Sys LC evaluates that the : {<= 10 ms} |
request is valid because it is in state | :
OFF. [;
|
3. The Sys LC changes to state ON. | :_,. v light_on :
4, The Sys LC switches on the Light. E |_|" d..d"2) :
; |
i |

duration constraint

Eu.ModSt.804

Timed trigger (timer):
A timed trigger indicates that a given time interval has passed since the occurrence of some event, such as entering a state (internal trigger) or receiving a request during the execution of the scenario.

Eu.ModSt.1221

The term "after" followed by the time such as "after {10 sec}", or "after{t_con_t_max}" indicates that the time is relative to the moment of an occurrence.

Eu.ModSt.1276

An example of a timed trigger is shown in the scenario depicted in Figure 805. The system responses with "light_on" 10 sec after the state ON has been entered.

© EULYNX Partners

Page 63 of 119

Modelling Standard

ID Requirement
Eu.ModSt.805
Figure 805 Example of a timed trigger
SysUC1.1: Switch on the light T T
Altemative Scenario: Switch on the light Button Light @
delayed [Sys LC 1.1.3] I : -

Precondition:
The Sys LC is in state OFF.

|
|
|
|
|
Interaction 1.1.3.A: [

|
1. - The Sys LC enters the state ON. |

: after {10 sec}

|

|

|

|

|

|

\

2. The Sys LC switches on the Light. _
light_on
Postcondition:

The Sys LC is in state ON.

Eu.ModSt.806

Internal trigger:
An internal trigger is described as demonstrated in the following example:
1. -The SubS LS detects a change of the indicated signal aspect.

Eu.ModSt.807

A stimulus created by entering or leaving a system state is to be described as demonstrated in the following examples.
1. - SubS LS enters the state OPERATING.
1. - SubS LS exits the state OPERATING.

Eu.ModSt.7939

The graphical representation of the time behaviour as shown in figure 1272 and figure 805 can be supplemented by a description in the description area of the sequences. "t_con_t_max" represents the defined time period
(duration):
e Start of timer should be mentioned within the corresponding step (trigger).
* “"Subsystem X starts to monitor the time period “t_con_t_max".”
» Reaction for timer that shall be waited for --> where possible combine within corresponding step otherwise keep it separate.
e “Subsystem X detects that time period “t_con_t_max” has expired.”
» Reaction for timer that has been exceeded (unintended case) --> where possible combine within corresponding step otherwise keep it separate.
¢ “Subsystem X detects that time period “t_con_t_max" has exceeded.”
¢ Restart of a timer within the corresponding step (trigger).
¢ “Subsystem X stops to monitor time period “t_con_t_max” caused by first command and starts to monitor the time period ™t_con_t_max" caused by second command.”
* Reset of a timer within the corresponding step (trigger).
® “Subsystem X stops to monitor time period “t_con_t_max"."”

Eu.ModSt.7943

Time periods shall be defined using block properties without further specification of the values. The values to be used shall be specified separately in the requirements management tool (chapter 5.3 Configuration and
engineering data) as binding requirements and linked to the corresponding definitions.

Eu.ModSt.808

Combined fragments:
In order to parallelize interactions as well as action steps of an interaction or define alternatives or loops, combined fragments defined by the Operators "par", "alt" or "loop" may be used.

Eu.ModSt.809

In sequence diagrams, combined fragments are logical groupings, represented by a rectangle, which contain the conditional structures that affect the flow of messages. A combined fragment contains operands and is defined by
operators (see Figure 812 and Figure 935).

Eu.ModSt.855

Operands are separated by dashed lines.

Eu.ModSt.856

Depending on the operator, there is a guard containing a constraint expression that indicates the conditions under which it is valid for the operand to begin execution. Guards appear at the beginning of the combined fragment
following the corresponding operator (example: alt [Guard]).

Eu.ModSt.810

The operator identifies the type of logic or conditional statement that defines the behaviour of the combined fragment.

© EULYNX Partners

Page 64 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.811

Operator "par”

In the example depicted in Figure 812, the usage of the operator "par" is demonstrated. The message Msg_Response 3is parallelized to Msg_Response_1 followed by Msg Response 2 using two par operands.

Eu.ModSt.857

If a par operand consists of more than one action step, the action steps are structured according the following schema (see also Figure 812):

par
3.al action step.
3.a2 action step.
3.ax ...

also par
3.b1 action step.
3.b2 action step.
3.bx ...

also par
3.c1 action step.
3.cx...

end par

Eu.ModSt.812

Figure 812 Example of a combined fragment defined by the operator "par"

SubSUC1.3:Apply combinedfragments ﬁ

Main Success Scenario: Operator Actor
"par" [SubS A SD 1.3.1]

Precondition:
State of SubS A. Operator “par

Interaction 1.3.1.A:

1. - SubS A receives a re

2. Sub& A valid e request.

Cd_Request_1 U

par

3.a1 SubS A changes its state.

Msg_Response_1

T

|

|

|

|

|

|

|

|

|
3.a2 SubS A responses to Actor. - Lf

3.a3 SubS A responses to Actor.

also par

Msg_Response_2

Msg_Response_3

State of SubS A,

3.b1 SubS A responses to Actoy] '
end par [|
T
Postcondition: Par Qperand |
|

© EULYNX Partners

Page 65 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.813

Interaction <Name of the interaction>
4.al - action step.

4.a2 action step.

Interaction <Name of the interaction>
4.a3 - action step.

4.a4 action step.

4.ax ...

also par

Interaction <Name of the interaction>
4.b1 - action step.

4.b2 action step.

4.bx ...

end par

Interactions are to be parallelized according to the following schema (see also Fig. 1255):
par

Eu.ModSt.1255

Figure 1255 Operator "par" with nested interactions

SubSUC1.3:Apply combinedfragments

Alternative Scenaric: Operator "par" with
nested interactions [SubS A SD 1.3.2]

Precondition:
State of SubS A.

Interaction 1.3.2.A:

1. - SubS A receives a request from Actor
2. 5ubS A validates the request.

3. SubS A responses to Actor.

par
Interaction 1.3.2.8:

4.a1 - SubS A receives a request
from Actor,

4.a2 SubS A validates the request.

4.a3 Subs A responses to Actor.
also par
Interaction 1.3.2.C:

4.b1 - S5ubsS A receives a request
from Actor.

4.b2 SubS A wvalidates the request.

4.b3 S5ubS A responses to Actor.
end par

Postcondition:
State of SubS A,

h

Msg_Resporse_3 '

Eu.ModSt.1700

Operator "par-strict"
The keyword "strict" is defined as extension to the operator "par":

» Semantics: If the "par" operator of a combined fragment is extended by the keyword "strict", all operands must be executed strictly parallel. This means that IOFlows are sent at the exact same time and included or
extended UseCases are invoked at the same time and terminated at the same time.
 Syntax: Extend keyword "par" in sequence text as well as in graphical frame box by "-strict"

Eu.ModSt.1701

In the example in Fig.1702, the usage of the extension "strict" of the operator "par" is shown.

© EULYNX Partners

Page 66 of 119

Modelling Standard

ID Requirement

Eu.ModSt.1702
Figure 1702 Example for the application of the extended operator "par-strict"

SubSUC1.3: Apply combined fragments i i

Alternative Scenario: Operatar "par- |An::tn:|r1| |A,:t,:.r2|
strict® [SubS A SD 1.3.8]

Precondition;
Subs A is in ==state==.

Interaction 1.3.8A:

E

-

I Jespsasssass

1. - 3ub3 A receives arequest from Actort.
2. 3ubsS A validates the request. Cd—REqUE;ﬂtJ
parstrict par-strict
J.a1 Sub3 A monitors a safety relevant state. !
also parstrict I fbe— i_ _______ Wi g

3.b1 3ub3 A commands Actor2 to execute an action

basedon a safety relevant state. H‘ Tl gnon:Se

end par-strict

Postcondition;
Subs A is in ==diffierent state==.

o
mermsmhm s e s m el e e m s

Eu.ModSt.1703 If a "par-strict" operand consists of more then one action step, the action steps are structured according the following schema:

par-strict
3.al action step.
3.a2 action step.
3.ax ...

also par-strict
3.b1 action step.
3.b2 action step.
3.bx ...

also par-strict
3.cl action step.
3.cX...

end par-strict

Eu.ModSt.936 Operator "alt"

In the example depicted in Figure 935, the utilisation of the operator "alt" is demonstrated in the way that exactly one of its operands is selected based on the value of its guard. The guard on each operand is evaluated before
selection, and if the guard on one of the operands is valid, that one is selected. If more than one operand has a valid guard, the selection is nondeterministic. An optional else fragment (else fragment without guard) is valid only
if none of the guards on the other operands are valid.

Eu.ModSt.1704 In case no guard of an alt operand is valid then no operand is executed, unless an optional else fragment without a guard is defined, in which case that operand is selected.

Eu.ModSt.814 If an alt operand consists of more then one action step, the action steps are structured according the following schema (see also Figure 935):
alt [Guard 1]
3.al action step.
3.a2 action step.
3.ax...
else alt [Guard 2]
3.b1 action step.
3.b2 action step.
3.bx...
end alt

© EULYNX Partners Page 67 of 119

Modelling Standard

ID Requirement
Eu.ModSt.935
Figure 935 Example of a combined fragment defined by the operator "alt"
SubSUC1.3: A combined fragments i
Altemative Scenario: Operator "alt" Actor ESuhS A

[SubS A SD 1.3.3] : -

Precondition: 0 “qlt
State of SubS A. perator “alt

Interaction 1.3.3.A:

|
|
|
|
|
1

1. - SubS A receives a

lidates the request.

alt [Guard 1] alt

|
]
|
I
|
I F
I Cd_Request_1
I
|
3.a1 SubS A changes its state. '
|

Msg_Response_1

3.a2 SubS A responses to Actor.

3.a3 SubS A responses to Actor. |i|“"‘- Msg_Response_2
else alt [Guard 2] i 1 —
3.b1 SubS A responses to Actor. U'{ Msg_Response_3
| al i

else alt[Guard3] = b -—=-—-—---- RIS RBERP

3.¢1 SubS A responses to Actor.
P Msg_Response_4

end alt

4. SubS A responses to Actor. Msg_Response_5

Postcondition:
State of SubS A. Alt operand

Eu.ModSt.937

Interactions are to be used in alt operands according to the following schema (see also Figure 1256):
alt [Guard 1]
Interaction <Name of the interaction>
4.al - action step.
4.a2 action step.
Interaction <Name of the interaction>
4.a3 - action step.
4.a4 action step.
4.ax ...
else alt [Guard 2]
Interaction <Name of the interaction>
4.b1 - action step.
4.b2 action step.
4.bx ...
end alt

© EULYNX Partners

Page 68 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.1256

Figure 1256 Operator "alt" with nested interactions

SubsSUC1.3:Apply combinedfragments i

Alternative Scenario: Operator "alt" with Actor :SuhSE
nested interactions [SubS A SD 1.2.4) B

Precondition:
State of SubS A,

T
[
[
[
Interaction 1.3.4.A: [
I
I

Cd Request 1 e
1. - SubS A receives a request from Actor.
2. SubS A validates the request. » Msg_Response_1
3. SubS A responses to Actor. u“‘ I
alt [Guard 1] lalt I
Interaction 1.3.4.B: Cd_Raq.Est_Z‘:

4.a1 - 3ubS A receives a request
from Actor.

4.a2 SubS A validates the request.

4.a3 SubS A responses to Actor.
else alt [Guard 2] - =
Interaction 1.3.4.C:

Msg_Resporse_2

|
Cd_Request_3 :

4.b1 - SubsS A receives a request
from Actor

4.b2 SubS A validates the request.
4.b3 SubS A responses to Actor.
end alt

Msg_Response_3

Postcondition:
State of SubS A.

Eu.ModSt.854

Please note: the guards of the alt operands are not to be depicted inside the combined fragment but only in the textual description of it.

Eu.ModSt.1983

Operator "opt":
The operator "opt" (optional sequence) is equivalent to the operator "alt" with only one operand. This implies that the operand is either executed or skipped depending on the validity of the guard (condition).

Eu.ModSt.858

Operator "loop":

A loop is specified by the interaction operator "loop" in which the trace represented by its operand repeats until its termination constraint is met. It may define lower and upper bounds on the number of iterations as well as the
guard expression. As shown in Figure 1257, these bounds are documented in brackets after the loop keyword as (minimum, maximum or termination condition), where the maximum (upper bound) may have the value *

indicating an unlimited upper bound.

Eu.ModSt.859

A combined fragment describing a loop is to be structured according to the following schema (see also Figure 1257):
loop (minimum, maximum or termination condition)

1. action step.

2. action step.

3. action step.

4. ...

© EULYNX Partners

Page 69 of 119

Modelling Standard

ID Requirement

Eu.ModSt.1257
Figure 1257 Example of a combined fragment defined by the operator "loop"

SubSUC1.3:Apply combinedfragments i(
Alternative Scenario: Operator "loop" Actor

[SubS A SD 1.3.5]

Precondition: i3 2
State of SubS A. Operator “loop

Interaction 1.3.5.A:

"

Cd_Recquest_1

1. - SubS A receives a est from Actor.

2. SubS idates the request.

loop (Minimum, maximum loop
or termination condition)

e I

\

Msg_Response_1

3. SubS A responses to Actor.

- S bs - —

5. SubS A responses to Actor.

Postcondition:
State of SubS A.

Msg_Response_3 :
I
I

i W

Eu.ModSt.860 Note: the (minimum, maximum or termination condition) of the loop operand is not to be depicted inside the combined fragment but only in the textual description of it.

Eu.ModSt. 1261 As shown in Figure 1258 and Figure 1259 the operands of combined fragments may themselves contain combined fragments, and thus can be composed into a tree hierarchy.

© EULYNX Partners Page 70 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.1258

Figure 1258 Operators "par" and "alt" with nested operators

SubsUC1.3: Apply combined fragments i

Alternative Scenano: Operators "par” and Actor SubS E
“alt" with nested operators [SubS A SD 1.3.6]

Precondition:
State of SubS A,

I
|
|
Interaction 1.3.6.A: '
1. - SubS A receimes a request from Actor. :
2. SubsS Avalidates the request. 1
s par)
3.a21 SubsS A responses to Actor, Llj‘
alsopar P e=——= = - - 4 — — = = = = - —
alt [Guard 1] lalt J

|

|
3.b1.a1 SubS A responses to Actor. Lr'"- Msg_Resporse_2
else alt[Guard 2] I Y il |

par par |
3.b1.b1.a1 SubS A responses to Actor
also par S
3.b1.b1.a2 SubS A responses to Actor.
end par

[
[
[
Cd Request 1 |

Msg_Respomse_1

end alt

also par L -1l .] I

leop (Minimum, maximum |Im:1p

or termination condition) Msg_Response_5

3.¢1.1. SubsS A responses to Actor.
3.c1.2 SubS A responses to Actor.
end loop

Msg_Response_6

end par

Postcondition:
State of SubS A

© EULYNX Partners

Page 71 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.1259

Figure 1259 Operator "loop" with nested operators

SubsSUC1.3:Apply combinedfragments i
Alternative Scenario: Operator "loop” with Actor
nested operators [SubS A SD 1.3.7] I —
|
Precondition: : |
State of SubS A. : |
Interaction 1.3.7.A: | '
el
1. - SubS A receives a request from Actor. | cd R a1 3
2. SubS A validates the request. | - B
loop (minimum, maxim um loop|
or termination condition) _PJ :
alt [Guard 1] alt | Msg_Response_1
3.a1 SubS A responses to Actor. [:](
else alt [Guard 2] i S il o L |
3.b1 SubS A responses to Actor. U{
Msg_Response 2
end alt |
|
par par
4.a1 SubS A responses to Actor. [f M
sg_Response_3
also par e | L
4.b1 SubS A responses to Actor. u{
Msg_Response_4
end par |
|
end loop |
5. SubS A to Act [I](T
. Su responses to Actor.
Msg_Response_5
Postcondition: ! T :
State of SubS A. ' |

© EULYNX Partners

Page 72 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.7961

Multiple instances of the same type

The behaviour of the SUS may interact with multiple instances of the same type of a subsystem, adjacent system or actor. One example is the subsystem point interacting with multiple point machines. In such cases, often
either:

1) all instances (or no instance) of a group of instances of the same type must fulfil a certain condition in order to induce a certain behaviour of the SUS

2) at least one instance of a group of instances of the same type must (or must not) fulfil a certain condition in order to induce a certain behaviour of the SUS

Multiple instances of the same type of a subsystem, adjacent system or actor, are modelled as described below:
e Exactly two instances of the subsystem, adjacent system or actor are shown in the sequence diagram, labelled as ‘1st” and ‘n-th’. In case of additional multiple sets, the ‘n’ is replaced by other available characters.
e The two instances jointly represent a set of instances with multiplicity 2 or higher. All represented interactions for the two instances must be interpreted together. The instance represented as ‘1-st” does not represent
any specific instance within the set.
¢ In the interaction that refers to a condition of the instances, use a combined fragment as follows:
e If an "all instances" (or "no instances") condition shall be represented, use a "par" fragment with two legs testing the condition on the "1st" and on the "n-th" instance. The interactions with all instances of the
set are to be interpreted as "AND"-connected.
e If an "at least one instance" condition shall be represented, use an "alt" fragment with two legs testing the condition on the "1st" and on the "n-th" instance. The interactions with all instances of the set are to be
interpreted as an "OR"-connected.

Eu.ModSt.815

Postcondition:

The postconditions positioned after the last interaction of a scenario representing the results of a UseCase are to be structured as follows:
Postcondition:

<Postcondition 1>.

<Postcondition n>.

Eu.ModSt.816

Example (see Fig. 715):
Postcondition:
SubS LS indicates the commanded signal aspect.

Eu.ModSt.1222

Postconditions which equal preconditions are not to be stated.

Eu.ModSt.938

If there are no postconditions to be stated, three hyphens are to be depicted instead of them:
Postcondition:

Eu.ModSt.3547

Include relationship
As shown in Figure 3549 an <<include>> relationship can be used to jump from an interaction scenario to the interaction scenario of an included use case (e.g., SubSUC1.3: Report status). The text part and the include symbol
(1) indicate which use case is to be accessed. After processing the included interaction scenario, the original interaction scenario is continued.

Eu.ModSt.3548

Alternatively to the include symbol (1) an "interaction use" (2) may be used to indicate which included interaction scenario is to be accessed. "Interaction uses" are shown as frames with the keyword "ref" in the frame label.
The body of the frame contains the name of the referenced interaction scenario.

Eu.ModSt.7949

For each SD that is referenced in another SD, a notice must be inserted in the modelling tool (e.g. Properties ->Text->Description) that corresponds to a defined schema:
 This SD is part of [referred SD].

Eu.ModSt.7950

The notice is to be transferred to "Requirements Part 2" of the specification document generated in the requirements management tool.

© EULYNX Partners

Page 73 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.3549

Figure 3549 Include relationship in interaction scenarios

Imeraction 1.2.1.C:

5. - The EULYNX field element Subsystem receives fom the Subsystem -
Electronic Intedocking the request to transmit the status.

B. The ELULYMY fisld element Subsystem notifies the Subsystem - Electranic
Intedocking ofthe transmizsion of the status inform ation.

7. The EULYMNX field element Subsystem reports the status information to
Subsystem - Electronic Intedocking. =<include== SubSUCT1.3: Report status

8. The EULYMNX field elemert Subsystem notifies the Subsystem - Electronic
Irtedocking that the transmizsion ofthe status information iz complete.

Cd_lInitialisation_Request

{= Con_tmax_PDI_Connection}

®

M en_Start_Intialisation

SubSUC1. 3: Report status |

Men_Initialisation_Completed |
—
Msg_Start_Initialisation

‘e i T

1 |
T

6. The EULY MX field element Subsystem notifies the Subsy stem - Electronic
Interlocking of the transmission of the status information.

7. The EULY NX field element Subsystem reports the status information to
Subsy stem - Electronic Interlocking.

SD1.3.x Report status

] @

¥ S
8. The EULY NX field element Subsy stem notifies the Subsystem - Electronic Msg_Initialisation_Completed I
Interlocking that the transmission of the status information is complete. o B |

Eu.ModSt.7084

8.3.4.3 Binding (see chapter 8.2.1)

Eu.ModSt.7753

Diagram of model view "Use case scenario” has an "Info" binding if it is further specified in a refined model view (e.g. through a state machine).

Eu.ModSt.7938

Diagram of model view "Use case scenario" has a "Req" binding if it is not further specified in a refined model view.

Eu.ModSt.7942

The definitions of time periodes (e.g. Con_tmax_PDI_Connection) represented by block properties have "Def" bindings.

Eu.ModSt.7944

The values of the defined time periods, which are specified and linked separately in the requirements management tool, have "Req" bindings.

Eu.ModSt.2131

8.3.5 Model View "Logical Context" of a SUS (AL1) - Description

Eu.ModSt.2132

The model view "Logical Context" as shown in Figure 2134 represents the environment of the SUS and provides initial information about the SUS boundaries and the relationships to the interaction partners. This diagram
contains the following definitions relevant to implementation:
» Interaction partners: the representation of the interaction partners as actors with whom the SUS concerned must be able to interact,
¢ Logical SUS interfaces:
- number of required logical interfaces represented by associations to interaction partners in the SUS environment defined by means of multiplicities at the association ends
- possible directions of the interaction (uni- or bidirectional).
- kinds of interfaces such as SCI-P, SMI-P and so on defined by means of roles at the association ends.

Eu.ModSt.2136

Interaction partners

Interaction partners (4, 5) of the SUS (1) are represented by actors. An actor describes a person (for example "Maintainer") or another system (for example the "Subsystem - Electronic Interlocking) in the role of a user of
services offered by the SUS concerned (here "Subsystem Point"). At the logical viewpoint actors are represented by logical structural entities if they are in the context of a system element belonging to the same overall system. If
an actor in the context of a system element is outside of the overall system of this system element (adjacent system) it is represented by an environmental structural entity.

Eu.ModSt.7880

Figure 2134 therefore includes for example the following related definitions:
* system element "Subsystem Electronic Interlocking" represented by a logical structural entity (LSE) assumes the role of an actor in the environment of "Subsystem Point" belonging to the same overall system (4).
* system element "Point machine" represented by an environmental structural entity (ESE) assumes the role of an actor in the environment of "Subsystem Light Signal" not belonging to the same overall system (5).

Eu.ModSt.2139

Logical SUS Interfaces
The connection between the SUS (represented by a logical structural entity) and an actor represents a logical interface (2, 3). It is depicted as an association that is a continuous line between the actor and the SUS. It
represents the definition that the SUS must be able to interact with the connected actor through a corresponding logical interfaces.

Eu.ModSt.2140

The association also represents the possible interaction directions of the interface. No arrow heads means that the interaction is bidirectional. An arrow head on the other hand indicates that an interaction is only possible in the
direction of the arrow.

Eu.ModSt.2141

On the side of the actor of the association, a multiplicity indication describes in more detail with how many of the respective actors the SUS concerned must be able to interact i.e., how many logical interfaces are required.

Eu.ModSt.2142

The definition of the quantity of each actor by means of multiplicities represents an important requirement regarding system development. It is obvious that it makes a difference, for example, whether the system depicted in
Figure 2134 requires an interface to one "Subsystem Electronic Interlocking” or to several.

© EULYNX Partners

Page 74 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.2143

The multiplicity "1" is defined at the SUS side of the association. The reason for this is that only requirements for the SUS concerned may be phrased in the respective requirements specification. However, according to the SysML
syntax, a multiplicity indication at the SUS side would represent a statement for the actor.

Eu.ModSt.2144

Some examples for the representation of multiplicities and their meaning:

1 or blank exactly one

0..1 none or one

* none or several

1.* one or several

2.4 at least two and at most four

Eu.ModSt.7881

Figure 2134 therefore includes for example the following related definitions:
¢ the "Subsystem Point" must be able to interact with exactly one "Subsystem Electronic Interlocking" as an actor, with the interaction possible in two directions.
¢ the "Subsystem Point" must be able to interact with one or more actors "Point machine", with the interaction possible in two directions.
* the "Subsystem Point" must be able to interact with exactly one "Basic Data Identifier" as an actor, with an interaction only possible from "Basic Data Identifier" to the "Subsystem Point".

Eu.ModSt.7745

Roles at the association ends represent the used “Interface kind” such as SCI-LS, SMI-LS and so on. In Figure 2134 "Subsystem Point" sees for example "Subsystem Electronic Interlocking"” in the role of "SCI-P" and vice versa.

Eu.ModSt.7882

Figure 2134 therefore includes for example the following related definitions:

* the interface between "Subsystem Point" and "Subsystem Electronic Interlocking" must be implemented according to the specification of "SCI-P".

* the interface between "Subsystem Point" and "Subsystem Maintenance and Data Management" must be implemented according to the specification of "SMI-P".
» the interface between "Subsystem Point" and "Subsystem Maintenance and Data Management" must be implemented according to the specification of "SDI-P".
¢ the interface between "Subsystem Point" and "Subsystem Security Services Platform" must be implemented according to the specification of "SSI-P".

Eu.ModSt.2134

Figure 2134 Example of SUS model view "Logical Context"

bdd [Package] Subsystem Point - Logical Context [Logical Viewpoint - Subsystem Deﬁnition]]

elogical structural entity»
«logical structural entitys Subsystem Point
Subsystem Electronic 1 1

Interlocking_@ SCHP sciP

«logical structural entity»

Subsystem Security Services 1 1
Platform SSI-P sSSP
1 ® 1~ [«environmental structural entity»
- Point machine
«logical structural entitys 1 1 @ P3 P3 5
Subsystem Maintenance and | sp|.F SMI-P
DataManagement 1 1

«environmental structural entitys | 4 1
Basic Data Identifier P4 P4
«environmental structural entity»| 4 1 1 1 |«environmental structural entity»
3 " -
Maintainer 51 = P2 P2 Power Supply

© EULYNX Partners

Page 75 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.377

8.3.6 Model view "Logical Context" of a SUS (AL1) - Modelling rules

Eu.ModSt.378

8.3.6.1 SysML diagram

Eu.ModSt.379

Block definition diagram (BDD): depicts the view "Logical System Context".

Eu.ModSt.3560

Name of the Diagram:
bddfPackage]<><System block signature><>-<>Logical Context<>[Logical Viewpoint<>-<>Subsystem Definition].

Eu.ModSt.383

Example:
bdd [Package] Subsystem Light Signal - Logical Context [Logical Viewpoint - Subsystem Definition]

Eu.ModSt.385

8.3.6.2 Model elements

Eu.ModSt.890

The model elements basically used to describe the model view "Logical Context" are depicted in Figure 2134.

Eu.ModSt.386

Block: Modular unit of structure in SysML that is used to define the Logical Structural Entity (LSE) or Environmental Structural Entity (ESE) representing the logical view of the SUS or the actors at the uppermost level of
abstraction.

Eu.ModSt.1184

Naming conventions for blocks representing LSEs:
<System block signature> := <Abbr. System ID> | <System ID>

Eu.ModSt.1186

<Abbr. System ID> := <Abbr. System type><><Abbr. System name>

Eu.ModSt.1212

<Abbr. System type> := "Sys" | "SubS" | "SysElem"

Eu.ModSt.1213

<Abbr. System name> := freely selectable

Eu.ModSt.1188

Examples:
Sys ABB
SubS LS
SysElem 1

Eu.ModSt.1185

<System ID> := <System type><><System name>

Eu.ModSt.1214

<System type> := "System" | "Subsystem" | "System Element"

Eu.ModSt.1215

<System name> := freely selectable

Eu.ModSt.1187

Example:

System ABB
Subsystem Light Signal
System Element 1

Eu.ModSt.1252

If there are project-specific commitments, a deviating designation of <System block signature> may be used.

Eu.ModSt.1189

The modeller must ensure that the descriptions of the functional (Functional Viewpoint) and logical (Logical Viewpoint) representations of actors and SUS match.

Eu.ModSt.391

Actor: At the Functional Viewpoint (model view "Functional Context"), an actor may be a class of users, roles users can play, or other systems. Cockburn [22] distinguishes between primary and secondary actors.

Eu.ModSt.740

A primary actor is one having a goal requiring the assistance of the system.

Eu.ModSt.741

A secondary actor is one from which the system needs assistance.

Eu.ModSt.392

Depiction of an actor:
At the logical viewpoint, however, the actors defined in the model view "Functional Context" are represented as parts of the logical overall system architecture. They are represented by logical structural entities if they are in the
context of a system element belonging to the same overall system. If an actor in the context of a SUS is outside of the overall system of this SUS (adjacent system) it is represented by an environmental structural entity.

Eu.ModSt.394

Association: specifies the structural relationship between a block, i.e. the SUS and an actor. It represents a logical interface (see also chapter 8.3.5)

Eu.ModSt.395

Depending on the direction of the information flow, the association has to be stated bi-directional or uni-directional.

Eu.ModSt.396

At the actor's side of an association, the multiplicity that defines the required quantity of each actor and the name of the logical interface has to be stated.

© EULYNX Partners

Page 76 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.397

At the block's side of an association, the multiplicity "1" and the name of the logical interface has to be stated.

Eu.ModSt.1191

Naming conventions for interfaces:
<Interface kind> := <Abbr. Type of interface>-<Interface ID>

Eu.ModSt.1192

<Abbr. Type of interface> := S*)CI | S*)Freely selectable | Freely selectable
S*)CI: Communication interface

S*)Freely selectable: Standardised Interface except SCI

Freely selectable: any non-standardised interface

*) "S" indicates that the interface is standardised

Eu.ModSt.1193

<Interface ID> := Freely selectable designator (as far as a generic interface is concerned, “"Gen"” or "XX"is to be used as Interface ID)

Eu.ModSt.1194

Examples:
SCI-P, SMI-LS, SDI-LS, SCI-Gen, SCI-XX

Eu.ModSt.1286

If the interface kind is used within the executable part of the model, where hyphens <-> are forbidden, an underscore <_> is to be used between <Abbr. Type of interface> and <Interface ID>.

Eu.ModSt.1287

Examples:
SCI_P, SMI_LS, SDI_LS, SCI_Gen, SCI_XX

Eu.ModSt.1896

If there are project-specific commitments, a deviating designation of <Interface kind> may be used.

Eu.ModSt.7746

8.3.6.3 Binding (see chapter 8.2.1)

Eu.ModSt.7752

Diagram of model view "Logical Context" has a "Def" binding.

Eu.ModSt.7718

8.3.7 Model view "Functional Partitioning" of a SUS (AL2) - Description

Eu.ModSt.7721

The model view "Functional Partitioning" shown in Figure 7723 describes the refinement of the SUS (1) by FEs.

Eu.ModSt.7849

The FEs (2) defined in the SIUS model view "Functional Partitioning" (see chapter 8.4.3), which represent the local behaviours of the PDI (see chapter 8.2.4), and the generic FEs (3) are referenced by the SUS through
reference associations (5). FEs which are assigned to the subsystem via reference associations (marked with a white diamond) are not part of the subsystem, but are only used there. They represent the local behaviour of the
PDI of the corresponding SIUS and are part of it.

Eu.ModSt.7850

The SUS-specific FEs (4) are part of the SUS which is represented by composite associations (6). FEs which are assigned to the subsystem via composite associations, i.e. so-called whole-part relationships (marked with a black
diamond) are part of the subsystem. They represent the specific behaviour of the subsystem that influences more than one interface. This so-called "linking behaviour" is also used to link the behaviour assigned to the interfaces.

Eu.ModSt.7851

The model view "Functional Partitioning" forms the basis for the model view "Functional Architecture" (see chapter 8.3.9). It defines the FEs in their maximum quantity structure in the form of multiplicities. Within the framework
of this quantity structure, the FE configurations required for the definition of the functional requirements are then created in the model view "Functional Architecture".

© EULYNX Partners

Page 77 of 119

Modelling Standard

ID Requirement

Eu.ModSt.7723
Figure 7723 Example of SUS model view "Functional Partitioning"

bdd Subsystern Point- Functional Fartitoning [Furctional Viewpoint - Subsystem ! ts

Subsystem Paint- Functional
Architecture

SCHP-Functional Viewpoint |

Eu.ModSt.7719 | 8.3.8 Model view "Functional Partitioning" of a SUS (AL2) - Modelling rules

Eu.Modst.7780 | 8.3.8.1 SysML diagram

Eu.ModSt.7781 Block Definition Diagram (bdd): depicts the model view "Functional Partitioning".

Eu.ModSt.7782 Diagram heading:
bddfPackage]<><System block signature> <>->Functional Partitioning<> [Functional Viewpoint - Subsystem Requirements]

© EULYNX Partners Page 78 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.7783

Example:
bdd [Package] Subsystem Point- Functional Partitioning [Functional Viewpoint - Subsystem Requirements]

Eu.ModSt.7811

8.3.8.2 Model Elements

Eu.ModSt.7812

Remains free for the time being.

Eu.ModSt.7843

8.3.8.3 Binding (see chapter 8.2.1)

Eu.ModSt.7852

Diagram of model view "Functional Partitioning" has a "Def" binding.

Eu.ModSt.7028

8.3.9 Model view "Functional Architecture” of a SUS (AL2) - Description

Eu.ModSt.7029

Figure 7755 shows the model view "Functional Architecture" (FA) of Subsystem Point. It is created based on the in model view "Functional Partitioning" defined FEs.

Eu.ModSt.7755

Figure 7755 Model view "Functional Architecture" of Subsystem Point

ok |

1 e e e

Eu.ModSt.7756

The model view "Functional Architecture" is explained in the following with a simple example as shown exemplarily in Figure 7031. It describes the external visible stimulus-response behaviour of a SUS (1) represented by a
Logical Structural Entity (LSE) that is structured in a way that enables an interface centric specification approach as described in chapter 8.2.4. The behaviour of the SUS is divided into Functional Entities" (FE), which
communicate with each other via internal interfaces and with the environment via external interfaces.

© EULYNX Partners

Page 79 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.7033

Functional Entities

To describe the overall behaviour of an SUS observable externally in an FA structured, two different representations of the FEs (4, 5) are used: FEs with a solid border (5) and FEs with a dashed border (4). Following the
interface centric specification paradigm explained in chapter 8.2.4, a solid-bordered FE represents the directly specified behaviour of the SUS that is the "linking behaviour" (e.g. S_P : S_P). It is an inseparable part of the SUS
behavioural model. FEs with dashed borders, on the other hand, are references (reference properties) to the interface protocols specified in the models of the application levels. These local behaviours are linked to the overall
behaviour of the SUS by the directly specified SUS linking behaviour. The model view "Functional Entity" is described in chapter 8.5 and chapter 8.6.

Eu.ModSt.7759

In Figure 7031, for example, the functional entity ":S_SCI_P_Command_and_Receive" is shown as a dashed block. This means that it is the local behaviour of the SCI-P protocol at application level, which is defined in the SCI-P
specification (see chapter 8.4).

Eu.ModSt.7037

Internal FE-coupling
Internal FE-couplings are implemented in two variants. In variant 1 (6), communication between two FEs takes place by means of signals and in variant 2 (7), permanent information is transmitted.

Eu.ModSt.7038

Variant 1 (6): an internal FE-coupling according to variant 1 defines an event-driven flow. It consists of two SysML proxy ports with the same name that are connected via a connector (SysML Connector). The connector
represents the communication channel over which the information objects defined in the port type (SysML interface block) such as "w_p" can be exchanged. The information objects are represented by SysML signals (see
chapter 8.7.4and chapter 8.6.6.10.1). The port type is used conjugated on one side (e.g., ~w_p). This means that an information object defined as outgoing in the interface block (port type) becomes an incoming information
object through conjugation.

Eu.ModSt.7039

Port name and port type are written in lower case. In addition, the ports are shown in the colour of the FEs.

Eu.ModSt.7040

Variant 2 (7): an internal FE-coupling according to variant 2 defines a continuous flow. It consists of two SysML proxy ports or alternatively SysML flow ports with the same name that are connected via a connector (SysML
Connector). The continuity of the information transmission is indicated by the abbreviation "d = data" at the beginning of the names of the ports involved.

Eu.ModSt.7036

The information flows defined in the internal FE-couplings or the couplings themselves are to be interpreted as descriptive elements of the behaviour and are only binding in the context of the overall behaviour. That
means that an information flow defined in an internal FE-coupling only becomes a mandatory requirement in the context of its active use, e.g. in a transition.

Eu.ModSt.7885

Please note: In some cases, flow ports are still used to describe internal FE-couplings (see for example Figure 7755). However, these will gradually be replaced by proxy ports in the future.

Eu.ModSt.7041

Ports used for internal FE-coupling are defined as functional ports. Their names are written in lower case. In addition, the ports are shown in the colour of the FEs.

Eu.ModSt.7043

External FE-coupling
The overall behaviour to be implemented by the manufacturers is connected to the logical SUS interfaces (2) via external FE-couplings (3).

Eu.ModSt.7044

An external FE-coupling consists of a proxy port representing a logical SUS interface, located at the SUS outer boundary and labelled with the designator of the interface concerned (e.g. SCI_P : SCI_P_Subsystem_EIL). The
proxy ports delegated from the FEs relevant to the interface using binding connectors (3) and representing the information flows (e.g. P11in : ~SCI_P_2 or P10inout : SCI_P_1) are embedded in it (9).

Eu.ModSt.7860

In other words, the port (e.g. P10inout : ~SCI_P_1) at the FE is duplicated on the SUS outer boundary. Both ports are connected with a binding connector. The information flows and their direction remain unchanged in the
interface block of the duplicated port.

Eu.ModSt.7045

The names of the proxy ports used in an external coupling (e.g. P11in or P10inout) designate the information flows assigned to the logical SUS interface. The port types (e.g. SCI_P_2 or SCI_P_1) define the information objects
of the information flows that must be able to be exchanged via the respective interface.

Eu.ModSt.7861

The information objects defined in the information flows or the couplings themselves are to be interpreted as descriptive elements of the behaviour and are only binding in the context of the overall behaviour. That means that
an information object defined in an external FE-coupling only becomes a mandatory requirement in the context of its active use, e.g. in a transition.

Eu.ModSt.7884

Please note: In some cases, flow ports are still used to describe external FE-couplings (see for example interface P3 in Figure 7755). However, these will gradually be replaced by proxy ports in the future.

Eu.ModSt.7046

Ports used for external FE-coupling are defined as logical ports. Port name and port type are written in capital letters. In addition, the ports are shown in the colour blue.

Eu.ModSt.7049

Open ports
Open ports (8) that is ports not associated to connectors define interfaces to specification parts not contained in the model, i.e. expected behaviour in the environment of the FEs. This behaviour can be implemented
proprietarily by each manufacturer, as long as the information expected at the ports is provided or the information delivered via the ports is processed accordingly.

Eu.ModSt.7762

Ports used as open ports are defined as logical ports. Port name and port type are written in capital letters. In addition, the ports are shown in the colour blue.

Eu.ModSt.7050

Open ports are also used to configure the specified behaviour.

Eu.ModSt.7030

Please note: The FA is not to be understood as a specification for an internal architecture of the SUS, but as a descriptive structuring. The FEs in communication relationship represent the expected overall behaviour of a SUS,
which must be fulfilled by the respective manufacturer in its entirety.

© EULYNX Partners

Page 80 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.7031

Figure 7031 Example of SUS model view "Functional Architecture"

ibd [Block] Subsystem Electronic Interlocking [Functional Viewpoint - Subsystem Requirements - Functional Architecture]J

CD «blocks

l . i: I I ! lhl y
SCI_CC : SCI_CC_Subsystem_EIL
Plinout: ~5CI CC_1

SCI_P : SCI_P_Subsystem_EIL

F1lin: ~SCI_P_2

: @ aequaly
aequals

Fllinout: ~SCI_P_1

aequals

Eu.ModSt.1800

8.3.10 Model view "Functional Architecture" of a SUS (AL2) - Modelling rules

Eu.ModSt. 1813

8.3.10.1 SysML diagram

Eu.ModSt. 1832

Internal Block Diagram (ibd): depicts the model view "Functional Architecture".

Eu.ModSt. 1833

Diagram heading:
ibd[Block]<><System block signature><>[Functional Viewpoint<>-<>System Requirements<>-<>Functional Architecture]

Eu.ModSt.1834

Example:
ibd[Block] Subsystem Electronic Interlocking[Functional Viewpoint-System Requirements-Functional Architecture]

Eu.ModSt.7758

8.3.10.2 Model elements

Eu.ModSt.7763

Block: Modular unit of structure in SysML that is used to define the Logical Structural Entity (LSE) representing the SUS at the Logical Viewpoint and the Functional Entities (FE) in the form of parts and reference properties.

Eu.ModSt.7764

Part: Parts (5) describe composition relationships between blocks. A composition relationship is also called a whole-part relationship. Thus, the parts used in a Functional Architecture of a SUS describe the composition
relationships between the LSE and the corresponding FEs representing linking behaviour as introduced in chapter 8.2.4.

Eu.ModSt.7857

Reference properties: Reference properties (4) enable an instance of a block that contains the reference property to refer to an instance of the block which types the reference property. They can be used to describe a logical
hierarchy that references blocks that are part of other composition hierarchies. Reference properties are depicted in a similar fashion to parts when shown on the internal block diagram, except that their box symbol has a
dashed instead of a solid boundary. In the model view "Functional Architecture" of a SUS reference properties represent FEs which are references to the local behavioural parts of the interface application protocol as defined in
model view "Functional Architecture" of the SIUS (see chapter 8.4.5).

Eu.ModSt. 1137

Part/reference property signature := <Name of the part/reference property>:<FE_TFE block signature>

Eu.ModSt.694

Name of the part/reference property :=1) | 2) | 3)

1) A part/reference property is not named when the type (FE_TFE block signature) provides sufficient information to infer the role the part plays in the context of the Functional Architecture.

2) A part/reference property is given a name (Freely selectable designator) when the type (FE_TFE block signature) does not adequately describe the role the part plays in the context of the Functional Architecture.
3) A part/reference property is given a name (Freely selectable designator) when it is used within a SySim simulation.

Eu.ModSt.7858

SCI_P_Command_and_Receive

© EULYNX Partners

Page 81 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.7765

Connector: SysML connectors (6,7) are used to model the connections between parts or reference properties. Thus, they specify the communication-channels between the ports of FEs.

Eu.ModSt.7766

Whereas an out port of a FE may be connected to no connector or an infinite number of connectors, an in port may be connected to either no connector or only one connector, but must not be connected to more than one
connector.

Eu.ModSt.7859

Binding Connector: A binding connector (3) is a special kind of connector that constrains its ends to have the same value. It is used, among other things, to bind proxy ports to parts or reference properties. For example, the
value of the proxy port "P11in: ~SCI_P_2" (9) at the SUS interface (2) in Figure 7031 corresponds to that of the port of the same name of the FE ":S_SCI_P_Command_and_Receive". A binding connector is shown using the
connector notation, except that the connector path optionally has the keyword <<equal>> shown near its centre.

Eu.ModSt.7862

Designator of a logical SUS interface := </nferface kind><>:<><Signature of Interface block aggregating information flows>

Eu.ModSt.7863

<Signature of Interface block aggregating information flows> := <Interface kind>_<System block signature>

Eu.ModSt.7865

<Interface kind>: see chapter 8.3.6.2 (Example: SCI_P)

Eu.ModSt.7867

<System block signature>: see chapter 8.3.6.2 (Example: Subsystem_EIL)

Eu.ModSt.7864

Example of a designator of a logical SUS interface:
SCI_P : SCI_P_Subsystem_EIL

Eu.ModSt.7868

Designator of an Information flow := P<PNo><Port direction>_<Port information><>:<><Signature of Interface block aggregating information objects>

Eu.ModSt.7869

<PNo>, <Port direction>, <Port information> are defined in chapter 8.6.5.2.

Eu.ModSt.7870

<signature of Interface block aggregating information objects> := <Interface kind>_<IFNo>

Eu.ModSt.7871

Information flow number (IFNo): natural number

Eu.ModSt.7872

Example:

P11lin: SCI_P_2
P10inout : SCI_P_1
Plinout : SCI_CC_1

Eu.ModSt.7948

Please note: Regarding the use of flow ports, flow specifications and flow properties see [Eu.Doc.30].

Eu.ModSt.7760

8.3.10.3 Binding (see chapter 8.2.1)

Eu.ModSt.7761

Diagram of model view "Functional Architecture" has a "Def" binding.

Eu.ModSt.7197

Ports have a "Def" binding.

Eu.ModSt.7945

Flow specifications have an "Info" binding.

Eu.ModSt.7946

FLow properties of the flow specifications have a "Def" binding if they are further refined elsewhere (e.g. by linked telegram definitions in separate interface specifications or further requirements in chapter 5.X. of the
subsystem requirements specification in the requirements management tool).

Eu.ModSt.7947

FLowProperties of the FlowSpecifications have a "Req" binding if they are not further refined elsewhere.

Eu.ModSt.7186

8.3.11 Model view "Technical Functional Architecture" of a SUS (AL2) - Description

Eu.ModSt.7193

Figure 7194 shows the engineering path of the model views used to specify a SUS at the Technical Viewpoint on abstraction level AL2.

© EULYNX Partners

Page 82 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.7194

Figure 7194 Engineering path to specify a SUS at the Technical Viewpoint on abstraction level AL2

AM MBSE: Engineering path SUS

Functional Viewpoint Technical Viewpoint
I ' = S
1 = = et
g -
Functional Architecture iJ &= ————
(Internal block diagram) Bogpmeme e . .
Technical Functional Entity
i (Internal block diagram)
— : - R —
+ . - - - --‘-HF' —lp
L —————
I | [
Technical Functional Architecture (Internal 7 i =
black diagram) [} | i
2 - Behaviour of Technical Functional Entity

(e.g., State machine diagram)

Eu.ModSt.7767

The model view "Technical Functional Architecture" (TFA) supplements or substitutes the behaviour described in the model view "Functional Architecture", which is independent of technology, with behavioural components
derived from technical requirements. In other words, the FEs interconnected in the model view "Functional Architecture" are either transferred to the model view "Technical Functional Architecture" or completely or partially
replaced by Technical Functional Entities (TFE).

Eu.ModSt.7769

The SUS can either be described completely from a technical point of view (all FEs are replaced by TFES) or only certain parts of it (interconnection of TFEs and transferred FEs).

Eu.ModSt.7192

Figure 7188 shows an example of the transfer of the FES defined in the model view "Functional Architecture" to the model view "Technical Functional Architecture" of the SUS Subsystem Point. The SUS (1) is represented by a
Technical Structural Entity (TSE). The transferred FEs (5) are supplemented with the TFE "F_Control_And_Observe_4W_PM" (3) that describes the functionality of the four-wire interface to a point machine based on technical
requirements.

Eu.ModSt.7189

In model view "Technical Functional Architecture" TFEs are coupled with each other, with the already defined FEs (6) and with the environment (4) via external technical functional interfaces (2).

Eu.ModSt.7886

The overall behaviour of a SUS structured by a TFA can be divided into several TFAs in the graphical representation.

Eu.ModSt.7887

Technical Functional Entities

To describe the overall behaviour of an SUS observable externally in an TFA structured, two different representations of the TFEs are used: TFEs with a solid border (3) and TFEs with a dashed border. Following the interface
centric specification paradigm explained in chapter 8.2.4, a solid-bordered FE represents the directly specified behaviour of the SUS that is the "linking behaviour". It is an inseparable part of the SUS behavioural model. TFEs
with dashed borders, on the other hand, are references (reference properties) to the interface protocols specified in the models of the application levels. These local behaviours are linked to the overall behaviour of the SUS by
the directly specified SUS linking behaviour. The model view "Technical Functional Entity" is described in chapter 8.5 and chapter 8.6.

Eu.ModSt.7888

Internal TFE-coupling and external TFE-coupling
The definitions for internal FE-coupling and external FE-coupling in chapter 8.3.9 apply accordingly.

Eu.ModSt.7889

Ports used for external TFE-coupling and internal TFE-coupling are defined as technical functional ports. They are shown in the colour yellow (4).

Eu.ModSt.7890

Ports used for internal coupling of FEs with TFEs are functional ports. They are shown in the colour green (6).

Eu.ModSt.7891

Ports representing technical functional SUS interfaces (2) can only be connected to technical functional ports (4).

Eu.ModSt.7892

Open ports
Open ports that is ports not associated to connectors define interfaces to specification parts not contained in the model, i.e. expected behaviour in the environment of the TFEs. This behaviour can be implemented proprietarily
by each manufacturer, as long as the information expected at the ports is provided or the information delivered via the ports is processed accordingly.

Eu.ModSt.7893

Ports used as open ports are defined as logical ports. Port name and port type are written in capital letters. In addition, the ports are shown in the colour blue.

© EULYNX Partners

Page 83 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.7883

Please note: The TFA is not to be understood as a specification for an internal architecture of the SUS, but as a descriptive structuring. The TFEs or FEs in communication relationship represent the expected overall behaviour of

a SUS, which must be fulfilled by the respective manufacturer in its entirety.

Eu.ModSt.7188

Figure 7188 Example of SUS model view "Technical Functional Architecture"

bd [Bock] Subsystem Point 4 Wire PM T [Technical Vie = Subsysism Raquirements - Technscal Functional Archibeciure
ﬁ alechnicalsiruduraleniiys
1 Subsystem Point 4Wire PMLF

#51in_EST_EfeS_State

L4

Eu.ModSt.7301

8.3.12 Model view "Technical Functional Architecture" of a SUS (AL2) - Modelling rules

Eu.ModSt.7303

8.3.12.1 SysML diagram

Eu.ModSt.7304

Internal Block Diagram (ibd): depicts the model view "Technical Functional Architecture"

Eu.ModSt.7305

Diagram heading:

ibd[Block]<><System block signature><>[Technical Viewpoint<>-<>Subsystem Requirements<>-<>Technical Functional Architecture]

Eu.ModSt.7306

Example:

ibd [block] Subsystem Point 4 Wire PM I/F [Technical Viewpoint - Subsystem Requirements - Technical Functional Architecture]

Eu.ModSt.7307

8.3.12.2 Model elements

Eu.ModSt.7308

Block: Modular unit of structure in SysML that is used to define the TSE representing the technical manifestation of the SUS.

Eu.ModSt.7310

Please note: For the remaining model elements, the definitions in chapter 8.3.10.2 apply accordingly.

© EULYNX Partners

Page 84 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.7330

8.3.12.3 Bindings (see chapter 8.2.1)

Eu.ModSt.7333

Diagram of model view "Technical Functional Architecture" has a "Def" binding.

Eu.ModSt.7335

Ports have a "Def" binding.

Eu.ModSt.7336

Technical functional SUS interface has a "Req" binding if it is not further specified in a refined model view or in the form of a separate requirement.

Eu.ModSt.2486

8.4 Model views used to specify EULYNX interfaces

Eu.ModSt.2238

Model view "Logical Context": Block Definition Diagram (bdd)
The model view "Logical Context" describes the logical view of an interface at the upper level of abstraction.

Eu.ModSt.2239

Model view "Functional Partitioning": Block Definition Diagram (bdd)
The model view "Functional Partitioning" describes the refinement of the interface defined in model view "Logical Context" using Functional Entities.

Eu.ModSt.2240

Model view "Functional Architecture": Internal Block Diagram (ibd)
The model view "Functional Architecture" defines the global behaviour of the application protocol (see chapter 8.2.4).

Eu.ModSt.2241

Model view "Functional Entity": Internal Block Diagram (ibd) and State Machine (stm)

The model view "Functional Entity" encapsulates a subset of the functional requirements of an SUS in the form of a function module. It delimits the function module from its environment and defines the inputs and outputs.
In the discrete case, the behaviour of the function block is described by means of state machines. In this, the binding functional requirements are specified in the form of states and corresponding state transitions. As the model
view "Functional Entity" is used for the specification of EULYNX system elements as well as for the specification of EULYNX interfaces it is described in the separate chapter 8.5and chapter 8.6.

Eu.ModSt.2242

Model view "Information Flow": Block Definition Diagram (bdd)

The model view ,Information Flow" describes the information objects to be exchanged via an interface which are further refined to telegrams at abstraction level AL3. At present, the telegrams are not yet described in a model-
based way. They are defined in the interface specifications (e.g. Interface Specification SCI-P, [Eu.Doc.38]).

Eu.ModSt.2243

Figure 2244 shows the engineering path of the model views used to specify a SIUS considering the Functional Viewpoint and the Logical Viewpoint. It describes the context of the model views, with the arrows indicating which
model views are developed from which. Based on the definition of the logical SUS interfaces in model view "Logical Context" of the SUS (a: see Figure 2129 in chapter 8.3) the model views "Logical Context" and "Functional
Partitioning" of the corresponding SIUS are created. The model view "Functional Partitioning" in turn forms the basis for the creation of the model view "Functional Architecture" of the SIUS and the model view "Functional
Partitioning" of the SUS (b: see Figure 2129in chapter 8.3). Subsequently, the model views "Information Flow" and "Functional Entity" are created.

© EULYNX Partners

Page 85 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.2244

Figure 2244 Engineering path to specify a EULYNX interface

AM MBSE: Engineering path SIUS

Logical Viewpoint CSP

Engineering path SUS
]
" = {a'}

AL1 T Emm

r h ___] -'!I':'. .- :

Logical Context
H {Block definition diagram)
. e fe
- i Engineering = e ’
= | path SUS . ’
e W (o), | - v

Functional Architecture | -

N

| R

Data
RAMS and Security

(Internal block diagram) Functional Partitioning e
A Lz ri. T - {Block definition diagram)
e T ,'* S, PR g 2
e UL 00 - ——
5 : _ — -~ EE—— Behaviour of FE
:gaz:;z‘;:ﬁg:‘:iastam) FE (Internal block diagram) ¥ (e.g., State machine diagram)

Eu.ModSt.7229

8.4.1 Model view "Logical Context" of a SIUS (AL1) - Description

Eu.ModSt.7230

The model view "Logical Context" as shown in Figure 7231 describes the logical view of an interface at the upper level of abstraction. In contrast to the logical context of a SUS in which the logical interfaces are also defined in
terms of their number, an interface in its logical context is regarded as a one-to-one relationship.

Eu.ModSt.7233

An interface (1) is generally defined as a unique connection between two communication participants (5). From the logical viewpoint at the upper level of abstraction an interface is represented by a SysML association (1). An
association is depicted as a continuous line between the communication participants. It also represents the possible interaction directions of the interface. No arrow heads means that the interaction is bidirectional. An arrow
head on the other hand indicates that an interaction is only possible in the direction of the arrow. It represents the requirement that the two communication participants must be able to interact with each other.

Eu.ModSt.7235

The logical interface represented by an association (1) is linked to a SysML association block (3), which serves to refine the relationship. The global behaviour of the application protocol (Railway Control Protocol: RCP) is then
specified in this later in the model view "Functional Architecture".

Eu.ModSt.7237

A defined set of information objects (information flow) is transmitted via the interface in a precisely defined temporal sequence (protocol) in many cases.

An information flow and the corresponding definition of the temporal sequence can apply to different interfaces. These two properties of an interface are called interface kind (4).

The interface kind is mapped at the association ends in the form of roles (4). This separation of interface and interface kind makes it possible to communicate in the same way via several different
"unique relationships = interfaces".

The interface kind represents the requirement that it is to be applied to a specific interface.

Eu.ModSt.7239

An interface is identified by a unique name (2) placed above or below the association (1) representing the interface.

Eu.ModSt.7240

The black arrow shown in connection with the association indicates the reading direction. The directional arrow specifies the top-level navigation through the interface model to improve readability. It is taken into account when
refining the model, for example when defining the conjugation of information flows. Beyond that, it has ho meaning for the model.

Eu.ModSt.7241

The interface name can be identical to the interface kind if it is certain that the interface kind is only applied to a specific interface and not to several different ones.
If the interface name is the same as the interface kind, it may not be displayed.

© EULYNX Partners

Page 86 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.7231

Figure 7231 Example of SIUS model view "Logical context"
bdd [Package] SCI-P - Logical Context [Logical Viewpoint - Interface Deﬂnitiun]]

«logical structural entitys»
SCI.P 3

Subsystem Point - Functional
| Architecture

|
1 @ | SCI-F = 1
SCIP @

Subsystem Electronic Interlocking

zlogical structural entitys
Subsystem Electronic Interlocking

elogical structural entitys
Subsystem Point

D r—

Eu.ModSt.1730

8.4.2 Model view "Logical Context" of a SIUS (AL1) - Modelling rules

Eu.ModSt.1732

8.4.2.1 SysML diagram

Eu.ModSt.1733

Block definition diagram (bdd): depicts the view Technical Connection Domain Context.

Eu.ModSt.1734

Diagram heading:
bddfPackage]<><Interface name><>-<>Logical Context<>[Logical Viewpoint<>-<>Interface Definition].

Eu.ModSt.1735

Example:
bdd SCI-P - Logical Context [Logical Viewpoint - Interface Definition]

Eu.ModSt.7238

8.4.2.2 Model elements

Eu.ModSt.7784

Block: Modular unit of structure in SysML that is used to define the LSE representing the communication participants that is, the communicating subsystems (5).

Eu.ModSt.1364

Association block (3): an association block is a combination of an association and a block, so it can relate two blocks together but can also have internal structure and other features. The internal structure can be used to
decompose the connector that is typed by the association block. Association blocks are shown on block definition diagrams as an association path with a block symbol attached to it via a dashed line.

Eu.ModSt.7786

8.4.2.3 Bindings (see chapter 8.2.1)

Eu.ModSt.7787

Diagram of model view "Logical Context" has a "Def" binding.

Eu.ModSt.2260

8.4.3 Model view "Functional Partitioning" of a SIUS (AL2) - Description

Eu.ModSt.2261

The model view "Functional Partitioning" as shown in Figure 2262 describes the refinement of the interface defined in model view "Logical Context" using Functional Entities. These Functional Entities specify the local behaviours
of the communication protocol stack scaled-down to the application layer (PDI: Process Data Interface Protocol) at each side of the communicating system elements.

Eu.ModSt.2264

The specific (2) and generic (1) local behavioural parts of the application protocol defined by FEs are referenced by the communication partners via SysML reference associations (4). Reference associations are marked with a
white diamond and express that the FEs are not part of the subsystems, but are only used there. They are part of the PDI.

Eu.ModSt.7904

The FEs are used in the model view "Functional Architecture" to specify the global behaviour of the application protocol represented by the internal structure of the association block (3) associated with the association
representing the interface.

© EULYNX Partners

Page 87 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.2262

Figure 2262 Example of SIUS model view "Functional Partitioning"

bdd [Package] SCI-P - Functional Partitioning [Functional Viewpeoint - Interface Requiremenﬁlj

SubsystemElectronic Interlocking Subsystem Point

Generic requirements for subsystems

SCI-P - Functional Viewpoint

Eu.ModSt. 1359

8.4.4 Model view "Functional Partitioning" of a SIUS (AL2) - Modelling rules

Eu.ModSt.1361

8.4.4.1 SysML diagram

Eu.ModSt.1362

Block Definition Diagram (bdd): depicts the model view "Functional Partitioning".

Eu.ModSt.1405

Diagram heading:
bdd[Package]<><Interface name><>-<>Functional Partitioning<>[Functional Viewpoint<>-<>Interface Requirements]

Eu.ModSt.1406

Example:
bdd SCI-P - Functional Partitioning [Functional Viewpoint - Interface Requirements]

Eu.ModSt.1363

8.4.4.2 Model elements

Eu.ModSt.1407

Remains free for the time being.

Eu.ModSt.7796

8.4.4.3 Bindings (see chapter 8.2.1)

Eu.ModSt.7797

Diagram of model view "Functional Partitioning" has a "Def" binding.

Eu.ModSt.2265

8.4.5 Model view "Functional Architecture"” of a SIUS (AL2) - Description

Eu.ModSt.2266

The model view "Functional Architecture" as shown in Figure 2267 defines the global behaviour of the application protocol. The global behaviour is described by connecting the local behavioural components referenced by a
communication partner with the corresponding ones of the neighbour via communication channels.

Eu.ModSt.2269

The description of the global behaviour of the application protocol is done by the internal structuring of the association block (1) defined in the model view "Functional Partitioning". In this process, the communication partners
(2), which in turn reference the local behavioural parts of the protocol represented by FEs (3), are referenced in the form of SysML participant properties and connected via their logical SUS interfaces (4) with connectors (5).

© EULYNX Partners

Page 88 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.2267

Figure 2267 Example of SIUS model view "Functional Architecture"
ibd [Block] SCI-P - [Functional Viewpont - Interface Requirements - Fundional Nchi‘lactni!

aprootys

proxy» i
| clogical ports | alogical podts ;
I SCI_P : SC1P_Subsystem | SCHP : SCI_P_Subsystem_P i
|
I wequals waquals :
I
| Plinout : ~5Cl : SC|_GEN !
' :
I I
| wirgquals wequals |
I
| Pin - ~S01_P SCI_P_2 I
' !
|
| I
I a@quals wequals I

|
| Pout : ~5C1_P_ P 1 i

Eu.ModSt.7203

8.4.6 Model view "Functional Architecture"” of a SIUS (AL2) - Modelling rules

Eu.ModSt.1370

8.4.6.1 SysML diagram

Eu.ModSt.1371

Internal Block Diagram (ibd): depicts model view "Functional Architecture".

Eu.ModSt.1410

Diagram heading:
ibd[Block]< > <Interface name><>[Functional Viewpoint<>-<>Interface Requirements<>-<>Functional Architecture]

Eu.ModSt.1411

Example:
ibd[Block] SCI-P [Functional Viewpoint - Interface Requirements - Functional Architecture]

Eu.ModSt. 1372

8.4.6.2 Model elements

Eu.ModSt.1963

Participant property: Participant properties are placeholders that represent the blocks at the end of an association block, and are used when it is desired to decompose a connector. A participant property is depicted as a
dashed box, like a reference property, but distinguished from other properties by the keyword <<participant>>.

Eu.ModSt.7802

8.4.6.3 Bindings (see chapter 8.2.1)

Eu.ModSt.7803

Diagram of model view "Functional Architecture" has a "Def" binding.

Eu.ModSt.7909

Ports have a "Def" binding.

Eu.ModSt.2270

8.4.7 Model view "Information Flow" of a SIUS (AL2) - Description

Eu.ModSt.2271

The model view "Information Flow" describes the information objects to be exchanged via an interface. It consists of the two sub-model views "Direction of Information Objects" and "Information Objects", which are shown in
Figure 7774 and Figure 2272 respectively.

Eu.ModSt.7807

As shown in Figure 7774, the SUS interfaces such as SCI_P are depicted by proxy ports. These are typified with interface blocks such as SCI_P_Subsystem_P (1), which represent information flows in the form of embedded
proxy ports such as P10inout. The embedded proxy ports are typed with interface blocks (2), which in turn contain the information objects (e.g. Cd_Move_Point).

© EULYNX Partners

Page 89 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.7774

Figure 7774 Example of SIUS model view "Information flow" - Direction of Information Objects

Model view “Functional Architecture®
epronys I ! apronys
alogical poits : | =ixgical pors
SCI_P: SCI_P_Subsystem_EIL SCIP : 3C1_P_Subsysiem_P

— «equab

Plinout ; ~SCI Pinouly SCI_GEN

proxyPorts
«ProxyPort» Plinout : SCI_GEN
«ProxyPorts P3out : SCI_P_1
«ProxyPorts P8in : SCI_P_2

sinterfaceBlocks
ainformation flows @ i
SCI_P 1

||'-‘I'W ssignals Cd_Move_Point

Eu.ModSt. 1376

As shown in Figure 2272, the information objects are represented by SysML signals such as "Cd_Move_Point" (3). These signals can in turn have attributes such as "CommandedPointPositionState" (4) that represent

parameters of the information objects. The attributes are typed with basic data types or for example enumerations such as "PointPositionControlableState" (5).

© EULYNX Partners

Page 90 of 119

Modelling Standard

ID Requirement
Eu.ModSt.2272
Figure 2272 Example of SIUS model view "Information flow" - Information Objects
bdd [Fackage] SCI-P - Information Flows [Interface Requirements - Information Objects] J
= avalueType (enumeration)s
cd_"’u“_'P i @ ‘ | PoimtPositionControlable State
. edPoniPostionS “Poi . CommandedFointFositionState IL‘_EH 5
® =

evalueType (enumeration)s
PointPosition State

Msg_Point Position > -
g ReportedPointPositionState Right..
ReportedPointPositionState : PointPositionState MoEndPosition _
ReportedDegradedPaintPosition : PointPositionDegradedState ReportedDegradedPointPosition UnintendedPosition..

avalueType (enumeration)s

Tighdl = PointPositionDegraded State
Nog_Movemont Falled DegradedLeft -
DegradedRight _
Mt Degraded
NotApphcable _
signal avalueType (enumeration)s
Msg_Ability_To_Move_Paint P N AbilityToMove State

ﬁlpﬂdﬂhﬁﬂmﬂﬂﬂ z wm = ReportedAbilityToMoveState AbEToMove

Unable Tolklove _

Eu.ModSt.7842

Please note: These model views can also be used in an adapted form to define the information flows for internal couplings between FEs or TFEs in a Functional Architecture or Technical Functional Architecture.

Eu.ModSt.7206

8.4.8 Model view "Information Flow" of a SUS - Modelling Rules

Eu.ModSt. 1379

8.4.8.1 SysML diagram

Eu.ModSt.1380

Block Definition Diagram (bdd): depicts the sub-model views "Direction of Information Objects" and "Information Objects" of model view "Information Flow".

Eu.ModSt.1414

Diagram heading (sub-model view "Direction of Information Objects"):
bddfPackage]<><lInterface name><>-<><Information Flows><>[Interface Requirements<>-<>Dijrection of Information Objects

Eu.ModSt. 1378

Diagram heading (sub-model view "Information Objects"):
bdd[Package]<><Interface name><>-<><Information Flows><>[Interface Requirements<>-<>Information Objects

Eu.ModSt. 1417

Example:
bdd[Package] SCI-P - Information Flows [Interface Requirements - Direction of Information Objects]
bdd[Package] SCI-P - Information Flows [Interface Requirements - Information Objects]

Eu.ModSt.1381

8.4.8.2 Model elements

Eu.ModSt.1416

Remains free for the time being.

Eu.ModSt.7099

8.4.8.3 Bindings (see chapter 8.2.1)

Eu.ModSt.7106

Diagram of model view "Information Flows - Direction of Information Objects" has a "Def" binding.

Eu.ModSt.7100

Diagram of model view "Information Flows - Information Objects" has a "Def" binding.

© EULYNX Partners

Page 91 of 119

Modelling Standard

ID Requirement

Eu.ModSt.7107 Information Objects (Signals) have a "Def" binding if they are further specified in a refined model view or in the form of a separate requirement.

Eu.ModSt.7905 Information Objects (Signals) have a "Req" binding if they are not further specified in a refined model view or in the form of a separate requirement.

Eu.ModSt.1249 | 8.5 Model views "Functional Entity" and "Technical Functional Entity" - Description

Eu.ModSt.7487 Within the EULYNX approach to specify model-based requirements the concept of Functional Entity (FE) and Technical Functional Entity (TFE) is used.

Eu.ModSt.7488 FE and TFE represent behavioural entities and encapsulate a subset of the functional requirements of a SUS or SIUS in the form of stimulus-response behaviour independent of any architectural constraints. While FEs define
technology-independent functional requirements, TFEs describe technology-dependent ones.

Eu.ModSt. 7489 Please note: FEs and TFEs are not to be interpreted as elements of the hardware- or software architecture.

Eu.ModSt.7490 The stimulus-response behaviour of FEs and TFEs is defined by SysML state machines (see chapter 8.6.6).

Eu.ModSt.7491 The principle structure of a Functional Entity and a Technical Functional Entity is shown in Figure 7492.

Eu.ModSt.7492
Figure 7492 Example of a Functional Entity and a Technical Functional Entity

ibd [Block] 3_P ' [Functional Viewpoint - Subsystem Requirements - Functional Entity]

ibd [Block] F_Control_And_Observe_4W_PM [Technical Viewpoint - Subsystem Requirements - Technical Functional Enitity]

@ atechnical functional entity»
F_Control_And_Observe_4W_PM

d5%in_F_EST_EfeS_Gen_EST_EfeS_State: Stiing

D35in_Last_Target_Position: String
d19out_Ability_To_Move PM - String

di0out_PM_Position: Siring

d21in_Move_Left_PM - Boolean
d22in_Move_Right_FM : Boolean

D25out_Detection_Voltage | Boolean
D26in_Drive_Voltage_Available- Boolean
D24 out_Dx Voltage_Right: Booha:
D20in_Con_Dmve_Capability : Boolean ORI, e e

D230ut_Drve_Vollage_Left: Bookean

@ plinout ; ~cc_w Plinout:w_p

i i
painout : ~fs_w d3in_Point_Position: [String D27in_4W_Pattem - String

d?out_state Broadcast: |[Boolean d2in_Required_Point_Position: String

Tlin_Si_not_fulled : Pulsedin
D4in_Mormal_Maode IBoolean
tdout_Timeout : PulsedOuw = -

gfma_w : ~gfma_w
I
| =

d45in_Con_Active - Boobean

® 0

Eu.ModSt. 7493 Apart from state machines, FEs and TFEs may own

¢ SysML block properties (3),

* SysML block operations (2),

» SysML proxy ports used as atomic "in ports" and "out ports" (5, 6) or typed with an interface block in which the information objects to be exchanged via the port are defined (4, 7),
* SysML flow ports used as atomic "in ports" and "out ports" (8, 10).

Eu.ModSt.7494 The description of a FE (1) contains the stereotype <<functional entity>> as well as the FE name (e.g. S_W).

Eu.ModSt.7495 The description of a TFE (9) contains the stereotype <<technical functional entity>> as well as the TFE name (e.g. F_Control_And_Observe_4W_PM).

Eu.ModSt.7808 | 8.6 Model views "Functional Entity" and "Technical Functional Entity" - Modelling rules

Eu.ModSt.7829 The numbers (2) to (10) added in the following descriptions refer to Figure 7492.

Eu.Modst.7809 | 8.6.1 SysML Diagram

Eu.ModSt.7815 Internal Block Diagram (ibd): depicts model views "Functional Entity" and "Technical Functional entity".

© EULYNX Partners Page 92 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.7816

Diagram heading - FE:
ibd[Block]<><FE_TFE block signature><>[Functional Viewpoint<>-<>Subsystem Requirements<>-<>Functional Entity]

Eu.ModSt.7817

Diagram heading - TFE:
ibd[Block]<><FE_TFE block signature><>[Functional Viewpoint<>-<>Subsystem Requirements<>-<>Technical Functional Entity]

Eu.ModSt.7818

Example:
ibd[Block] S_Point [Functional Viewpoint - Subsystem Requirements - Functional Entity]
ibd[Block] F_Control_And_Observe_4W_PM [Functional Viewpoint - Subsystem Requirements - Technical Functional Entity]

Eu.ModSt.7819

8.6.2 Block

Eu.ModSt.7820

Block: Modular unit of structure in SysML that is used to define a FE or TFE

Eu.ModSt.7821

Block name: <FE_TFE block signature>

Eu.ModSt.7822

Example:
S P
F_Control_And_Observe_4W_PM

Eu.ModSt.906

<FE_TFE block signature> := <Layer of LA modelling pattern >_ <Name of functionality>_<Operational entity>

Eu.ModSt.911

AL

<Layer of LA modelling pattern> :=C | S | F |
C: Command control layer,

S: Safety layer,

F: Field layer

: if no layer is applicable
See chapter 8.2.2

Eu.ModSt.916

<Name of functionality> :=1)|2)|3)|4)|5) | 6)
1) FE/TFE specifies the essential states of an operational entity (operating modes): EST
2) FE/TFE specifies the behaviour of an operational entity: <description of the functionality> (example: Control_And_Observe_4W_PM)
3) FE/TFE specifies local behaviour of the application protocol layer (RCP) assigned to a certain operational entity (see chapter 8.2.4):
<Interface name> (example: SCI_P) or
<Interface name>_<description of the functionality> (example: SCI_P_Report_Status)
4) FE/TFE specifies generic local behaviour of the application protocol layer (RCP):
<Abbr. Type of interface>_Gen (example: SCI_Gen)
<Abbr. Type of interface>_<description of the functionality>_Gen (example: SCI_Check_Version_Gen)
5) FE/TFE specifies generic local behaviour of the application protocol layer (RCP) assigned to a certain group of operational entities:
<Abbr. Type of interface>_ <Operational entity_Operational entity_..._ Operational entity>_Gen (example: SCI_LS_P_Gen) or
<Abbr. Type of interface>_ <Operational entity_Operational entity_..._ Operational entity>_ <description of the functionality>_Gen (example: SCI_LS_P_Check_Version_Gen)
6) FE/TFE specifies generic local behaviour of the application protocol layer (RCP) assigned to a certain group of operational entities using a common designator:
<Abbr. Type of interface>_ <group designator>_Gen (example: SCI_EfeS_Gen) or
<Abbr. Type of interface>_<group designator>_ <role of communication partner> (SCI_EfeS_Prim)
<Abbr. Type of interface>_ <group designator>_ <description of the functionality>_Gen (example: SCI_EfeS_Check_Version_Gen)
<Abbr. Type of interface>_<group designator>_ <role of communication partner>_<description of the functionality> (example: SCI_EfeS_Prim_Check_Version)
<group designator> := Freely selectable common designator (example: FE for field elements)
<role of communication partner> := freely selectable designator such as Prim (Primary) and Sec (Secondary)

Eu.ModSt.966

<Operational entity>:=1)|2)|3) | 4) | 5)

1) FE/TFE specifies the behaviour or the essential states of an operational entity: Name of the operational entity (vertical slice of the LA modelling pattern)
Examples: LS, P, SOR (start of route), EOR (end of route)

2) FE/TFE specifies generic behaviour or the essential states of an operational entity: Gen

3) FE/TFE specifies generic behaviour or the essential states assigned to a certain group of operational entities:
<Operational entity_Operational entity_..._Operational entity>_Gen (example: LS_P_Gen)

4) FE/TFE specifies generic behaviour or the essential states assigned to a certain group of operational entities using a common designator:
<group designator>_Gen (example: EfeS_Gen)

<group designator> := Freely selectable common designator (example: FE for field elements)

5) FE/TFE specifies the local behaviour of the application protocol layer (RCP): no operational entity

Eu.ModSt.7810

8.6.3 Model elements - Block properties

© EULYNX Partners

Page 93 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.7497

Block properties (3) are to be interpreted in the sense of variables or constants that store values. They are prefixed with "Mem".
Examples: Mem_last_Target_Requested, Mem_Current_Point_Position.

Eu.ModSt.534

Block properties are to be typed using the defined SySim value types.

Eu.ModSt.533

All SysML block properties have to be initialised. The initialisation must be carried out in an init-operation using ASAL. This SysML block operation is systematically named cOp1_init().

Eu.ModSt.7498

The initialisation can be carried out in the body of the init-block operation systematically named cOp1_init(). Alternatively it can be carried out directly in the transition effect of the transition outgoing from initial state of the state
machine.

Example:

Mem_S_W_Position :="";

Mem_SW_Last_Position :="";

The assignments of values to the corresponding block properties are to be interpreted as definitions. They become mandatory requirements (binding character "Req") when they are used in a mandatory requirement, such as a
transition of a state.

Eu.ModSt.536

Some reasons to use SysML block properties are given below. This is expressed by means of corresponding naming conventions:

Eu.ModSt.539

Defining configuration data: Con_data-name (e.g. Con_t_ini_max)

Eu.ModSt.540

<blockpropertyname> ::= <Con><mark> <propertyinformation>
<propertyinformation>::= <alphaNum> <remaininginformation>
<remaininginformation> ::= " | <alphaNum> <remaininginformation>
<Con>::= Con

<alphaNum> :=A|[B| ...l zlalb|...|_|o]..|9
<mark>::= _

Eu.ModSt.897

Defining site data: Site_data-name

Eu.ModSt.898

<blockpropertyname> ::= <Site><mark><propertyinformation>
<propertyinformation>::= <alphaNum><remaininginformation>
<remaininginformation> ::= | <alphaNum> <remaininginformation>

<Site>::= Site
<alphaNum> ::=A|B|..|Z]a]lb]|..]_]0]|...|9
<mark>::= _

Eu.ModSt.537

Caching a value (except the value of a port): Mem_value-identifier (e.g. Mem_signal_aspect_to_be_indicated)

Eu.ModSt.541

Caching the value of a port: Mem_port-name (e.g. Mem_T6_Msg_defective)

Eu.ModSt.542

<blockpropertyname> ::= <Mem><mark><port-name>
<Mem>::= Mem
<mark>::= _

Eu.ModSt.538

<blockpropertyname> ::= <Mem><mark> <propertyinformation>
<propertyinformation>::= <alphaNum> <remaininginformation>
<remaininginformation> ::= " | <alphaNum> <remaininginformation>
<Mem>::= Mem

<alphaNum> :=A|[B| ...l zlalb|...|_|o]..|9
<mark>::= _

Eu.ModSt.7813

8.6.4 Model elements - Block operations

Eu.ModSt.7500

Block operations (2) are used in order to specify
e internal broadcast events or
* algorithms of data transformations defined in the operation body (call behaviour, time advance behaviour).

Eu.ModSt.7951

The content of an operation defined in the operation body shall always be displayed in the requirements management tool in "Requirements Part 1" and the name of the operation must be noted above it as a comment. The
actual name of the operation, which comes from the model element, shall then be displayed in "Requirements Part 2".

Eu.ModSt.1011

8.6.4.1 Internal broadcast events

Eu.ModSt.545

Internal broadcast events are supposed to submit broadcasts within the state machine of a FE/TFE.

© EULYNX Partners

Page 94 of 119

Modelling Standard

ID Requirement

Eu.ModSt.550 Naming of internal broadcast events
bc<Id>_<broadcast information>,
Example: bcl_indicate_signal_aspect.

Eu.ModSt.969 Id: Natural number starting with 1

Eu.ModSt.548 8.6.4.2 Definition of algorithms for data transformation

Eu.ModSt.549 There are two types of behaviour that can be defined by means of SysML block operations:
¢ call behaviour and
 time advance behaviour.

Eu.ModSt.7823 8.6.4.2.1 Call behaviour

Eu.ModSt.7502 Block operations used to define call behaviour are prefixed with cOp<Id> where "Id" is a natural number starting with 1.

Eu.ModSt.7504 Call operations are used as

* boolean expressions or parts of it in change events: e.g. when(cOp3_No_End_Position)/
e transition guards: e.g. when(cOp5_Trailed)[cOp7_Is_Trailable]/
* transition effects: e.g after(D5in_Con_tmax_Point_Operation/cOp12_Timeout();

Eu.ModSt.7503 Call behaviour is invoked on demand, executed and terminated after execution. It is supposed to define event-driven data transformations. The algorithm of the data transformations is described in the body of the corresponding
block operation using the Atego Structured Action Language (see chapter 8.6.7).

Example: cOp2_All_Left
if cOp8_Supports_Multiple_PMs() then
return (
(D21in_PM1_Position = "LEFT") and
(D22in_PM2_Position = "LEFT" or D13in_PM2_Activation= "INACTIVE")

)
else
return D21in_PM1_Position = "LEFT";
end if

Eu.ModSt.7505 The call operation to initialise the block properties and Out Ports of a FE is named cOp1_init() systematically.

Eu.ModSt.7506 Call operations are to be interpreted as definitions. They become mandatory requirements (binding character "Req") when they are used in a mandatory requirement, such as a transition of a state.

Eu.ModsSt.1014 8.6.4.2.2 Time advance behaviour

Eu.ModSt.1015 Time advance behaviour is invoked once during system activation and executes continuously. It is supposed to define continuous data transformation. The algorithm of the data transformations is to be described in the body of
the corresponding block operation using the Atego Structured Action Language (see chapter 8.6.8).

Eu.ModSt.553 Naming of time advance behaviour
tOp<Id>_<behaviour name>
Example: tOp1_indicate_availability_ratio

Eu.ModSt.1017 Id: Natural number starting with 1

Eu.ModSt.7814 8.6.5 Model elements - Ports

Eu.ModSt.7507 | 8.6.5.1 Atomic SysML in ports and out ports

Eu.ModSt.7508 A FE features interfaces that define the stimuli consumed by the assigned state machine, represented by atomic in ports, and responses generated by the assigned state machine, represented by atomic out ports.

Eu.ModSt.7509 In ports and out ports are specified as SysML proxy ports or SysML flow ports of the SysML block representing the FE/TFE depicted in an internal block diagram (ibd).

© EULYNX Partners Page 95 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.7510

In ports and out ports are described according to the port definition schema below:

<Port information type><PNo><Port direction>_<Port information>:<Data type>.

Eu.ModSt.7511

Port information type

Used port information type:

¢ D or d: data ports (D-Ports),
¢ T or t: trigger ports (T-Ports).

Eu.ModSt.7512

Data ports and trigger ports start with a small letter (such as d3in_Point_Position or t4out_Timeout) if they are part of an internal connection between two FEs or between a FE and a TFE. In this case they are referred to as
functional ports and have the colour green like the corresponding F E (5).

Eu.ModSt.7513

Data ports and trigger ports start with a capital letter if they are part of an external connection between a FE and the system environment (system interface) or if it is an open port (such as D4in_ Normal_Mode or
T1in_SIL_not_fulfiled). In this case they are referred to as logical ports and have the colour blue (6).

Eu.ModSt.7514

Data ports and trigger ports which are part of a connection between TFEs or a TFE and the system environment (technical system interface) are referred to as technical functional ports and have the colour Yellow (10). They
start with a small letter if they are part of an internal connection between two TFEs and with a capital letter if they are part of an external connection between a TFE and the system environment (technical system interface).

Eu.ModSt.7515

Data ports (5), (6)
Data ports are especially suited to indicate permanently available information. The value of a D-port only changes if it is explicitly changed.

Eu.ModSt.7516

Data in ports are used as arguments of Boolean expressions in change events or transition guards. They may represent arguments in data transformations or other data, that need to be permanently reachable by the behaviour
of a FE (e.g configuration data: d21in_Con_Downgrade_Most_Restrict). Their values can be permanently regarded as valid.

Eu.ModSt.7517

Data out ports are used to provide continuous data created within a FE for its environment (e.g. to be available for adjacent FEs, reachable via their data in ports).

Eu.ModSt.7518

Trigger ports (8)
Trigger ports are especially suited to indicate singular events. They have a Boolean value that always enters false and only briefly changes to true when the event occurs (data types PulsedIn or PulsedOut). Afterwards the value
is automatically returned to false.

Eu.ModSt.7519

Trigger in ports are mainly used as arguments of Boolean expressions in change events.

Eu.ModSt.7520

Port number (PNo)
For each port of a FE/TFE with the port information type "D or d" or "T or t", a unique PNo is to be assigned in the format of a natural number. The ports need not be numbered consecutively.
For example port numbers like 1, 2, 3, 4, 5 are possible, but also 1, 3, 6.

Eu.ModSt.7521

Port direction

The direction of the in Ports and out Ports are additionally defined, i.e. whether it is a stimulus or a response for the FE.
¢ An "in" after the port number represents a stimulus or a permanently present value,
¢ An "out" after the port number represents a response.

Eu.ModSt.7522

Port information
The port information defines the information type and the semantic meaning of the information to be transmitted, e.g. "Cd_Indicate_signal_aspect".
<Port information> := <Information type> _ <Information>

Eu.ModSt.7523

Information type: Msg (message), Cd (command), Con (configuration data), Site (site data) or project-specifically determined information types.

Eu.ModSt.7524

Information: semantic meaning of the information to be transmitted, e.g. Indicate_signal_aspect.

Eu.ModSt.7525

Data type
The data type which is assigned to any in port and out port is only shown on the diagram if it is necessary for a correct interpretation.

Eu.ModSt.7526

Initialisation of out ports
All data out ports are initialised. The initialisation can be carried out in the body of the init-block operation systematically named cOp1_init(). Alternatively it can be carried out directly in the transition effect of the transition
outgoing from initial state of the state machine. Trigger out ports are set to "FALSE" by default and are not explicitly initialised.

Example:
D25out_Redrive := FALSE;

The assignments of values to the corresponding out ports are to be interpreted as definitions. They become mandatory requirements (binding character "Req") when they are used in a mandatory requirement, such as a
transition of a state.

© EULYNX Partners

Page 96 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.7527

8.6.5.2 SysML proxy ports to describe a signal-based communication

Eu.ModSt.7528

A FE features interfaces that define event-driven in-flow of information consumed by the assigned state machine and event-driven out-flow of information generated by the assigned state machine.

Eu.ModSt.7529

The information flows are represented by SysML proxy ports typed with SysML interface blocks (4, 7).

Eu.ModSt.7530

The information objects to be exchanged are represented by signals. The interface blocks define the receptions for these signals.

Eu.ModSt.7531

When a signal is received, a signal event is triggered by the corresponding reception, which is then used as a trigger for a state transition, for example.

Eu.ModSt.7824

Proxy ports to describe a signal-based information flow are described according to the port definition schema below:

<Port information type><PNo><Port direction>_ <Port information>.<Signature of Interface block aggregating information objects>.

Eu.ModSt.7825

Port information type
Used port information type: P or p

Eu.ModSt.7532

Ports and their interface blocks are written in small letter (such as plinout : ~cc_w) if they are part of an internal connection between two FEs. In this case they are referred to as functional ports and have the colour green
like the corresponding FE (4).

Eu.ModSt.7533

Ports and their interface blocks are written in capital letters if they are part of an external connection (system interface) between a FE and the system environment (such as P3inout : W_P) or if they are open ports. In this case
they are referred to as logical ports and have the colour blue (7).

Eu.ModSt.7534

Ports which are part of a connection between TFEs or a TFE and the system environment (technical system interface) are referred to as technical ports and have the colour yellow (10). They start with a small letter if they are
part of an internal connection between two TFEs and with a capital letter if they are part of an external connection between a TFE and the system environment (technical system interface) or if they are open ports.

Eu.ModSt.7535

An information object defined as outgoing in the interface block (port type) becomes an incoming information object through conjugation. This conjugation is indicated by the character "~" preceding the corresponding interface
block (example: plinout : ~cc_w).

Eu.ModSt.7826

Port number (PNo)
For each port of a FE/TFE with the port information type "P or p", a unique PNo is to be assigned in the format of a natural number. The ports need not be humbered consecutively.
For example port numbers like 1, 2, 3, 4, 5 are possible, but also 1, 3, 6.

Eu.ModSt.7827

Port direction

The direction of the ports are additionally defined ("in", "out", "inout").

Eu.ModSt.7828

Port information
Freely selectable and optional.

Eu.ModSt.7536

Signature of Interface block aggregating information objects
The information flow through a proxy port is represented by an interface block in which the receptions for the incoming and outgoing information objects are defined. The information objects are represented by signals. The use
of interface blocks and signals is described in the chapters 8.4.7 (Model view "Information Flow"), 8.6.6.9.4 (Signal event) and &.6.6.10.1 (Event-driven responses using signals).

Eu.ModSt.7565

8.6.6 Model elements - state machines

Eu.ModSt.7566

In the following, the term "Functional Entity" and the corresponding abbreviation "FE" stand for both a FE and a TFE.

Eu.ModSt.7567

A FE is always in a state that abstracts a combination of values given in the FE. Events arriving at the FE lead to reactions - depending on the state - that change values of SysML out ports or SysML block properties, invoke a
local trigger or a call operation or send a signal via a port and result in new states.

Eu.ModSt.7568

The state machine diagrams (see figure 7569) are children of the state machine and illustrate its behaviour, i.e. they describe the stimulus-response behaviour of a FE. The state machine contains states and state transitions that
are triggered by trigger in ports, data in ports, internal broadcast events, signal events as well as timing events. The state transitions represent the binding functional requirements of the system to be specified.

Eu.ModSt.7830

State Machine Diagram (STD): defines the behaviour of a FE.

Eu.ModSt.7934

For each STD, a description must be inserted in the modelling tool (e.g. Properties ->Text->Description) that corresponds to a defined schema:
* The SUS or SIUS receives a stimulus and responds with the result to....

© EULYNX Partners

Page 97 of 119

Modelling Standard

ID Requirement

Eu.ModSt.7935 A possible application of the schema is shown below using the example of the subsystem LS:
Information:

This state machine diagram describes the requirements for the following functionalities:

* receives the observed Signal Aspect and reports this to the Subsystem - Electronic Interlocking

* receives the observed intentionally dark state and reports this to the Subsystem - Electronic Interlocking
* receives the observed Luminosity and reports this to the Subsystem - Electronic Interlocking

Eu.ModSt.7936 The description is to be transferred to "Requirements Part 2" of the specification document generated in the requirements management tool.

Eu.ModSt.7832 Diagram heading:
stm/State Machine]<><FE_TFE block signature><>[Functional Viewpoint<>-<>Subsystem Requirements or Interface Requirements<>-<>Functional Entity or Technical Functional Entity<>STD<DiaNo>]

Eu.ModSt.1128 <DiaNo> := Natural number starting with 1

Eu.ModSt.7569
Figure 7569 Example of a state machine diagram

stm|[State Machine] F_Observe_Lumenosity - Behamour[Functonal Viewpont - Subsystem Requrements - Functional Entsty STD4]J

& ={N0_OPERATING_VOLTAGE)

Intiak)

whan{ d51in_EST_EfeS_Ststs = =BOOTING™)

2 T_EfeS_5 = *HO_COFERATING_VOLTAGE® if
when{ d51in_EST_EfeS_State = ~300TING™ OR whan(dSlin_EST_EfeS_State _AFERL - AGE
d51in_EST_EfeS_Siats = ~INITIALISING™ }f
£ OBSERVING_LUMNOSITY)
»
Imiteal 1
whin DSin_Sensed_Lumnosty = "Day= i/ when{ D#n_Sensed Lumingsily = "Highz" }/
¥
DAY B NIGHT |
| whan{ D5n_Sensed_Luminosity = “Highe" |/
L_Em;tﬂimt_ﬂhumduLun-lmsiy - "':I:u'\.-"L]"F Ertryd2 lou_Observed_Lumnosty .= "Higno s |
whan DSin_Sanded Lumngsly = ="Day™ §/f

Eu.Modst.7570 | 8.6.6.1 Region

Eu.ModSt.7571 Each state machine contains at least one region, which itself can contain a number of states and pseudostates, as well as the transitions between them. During execution of a state machine, each of its regions has a single active
state that determines the transitions that are currently viable in that region. A region must have an initial pseudostate and can have a final state that correspond to its beginning and completion, respectively.

Eu.ModSt. 7572 If a state machine contains a single region, it is represented by the area inside the frame of the state machine diagram and it is not to be named. Multiple regions are named and shown separated by dashed lines. A state
machine with multiple regions may describe some concurrent behaviour happening within the state machine's owning block.

Eu.ModSt.7573 8.6.6.2 State

Eu.ModSt.7574 The UML specification defines a state as ,a situation during which some (usually implicit) invariant condition holds. The invariant may represent a static situation such as an object waiting for some external or internal event to
occur®. The ,object", in the present case the FE, is waiting for a stimulus from its environment or for an internal stimulus such as a time event or a local trigger.

Eu.ModSt.7575 Thus, a state represents a "between stimuli" condition of the external observable stimulus-response behaviour of a FE. In other words, it specifies the responses to incoming stimuli.

Eu.ModSt.7576 It is helpful to use the analogy that a block, i.e. the FE, is controlled by a switch. Each state corresponds to a switch position. The state machine defines all valid switch positions (i.e. states) and transitions between switch
positions (i.e. state transitions). If there are multiple regions, each region is controlled by its own switch with its switch positions corresponding to its states. The switch positions can be specified by a form of truth table - similar
to how logic gates can be specified - in which the current states and transitions define the next state.

Eu.ModSt.7577 In the example depicted in Figure 427, the state ST2 represents a "between stimuli condition", i.e. it constitutes the precondition for triggering a response in the form of Effect_1. Following the analogy that the FE is controlled
by a switch, the switch would be positioned to ST2. When Event_3 occurs Effect_1 is executed while the FE changes to state ST3.

© EULYNX Partners Page 98 of 119

Modelling Standard

ID Requirement

Eu.ModSt.7578
Figure 427 Example of a state specifying a response

stm Stimulus_Response_ Behaviour- Functional Viewpoint
[System Requirements - Functional Entity STD 1]

ST1

Event_1/ Event_2

\
P

su]—(sfm)

Event_3/Effect_1;

Eu.ModSt.7579 In the EULYNX requirements specification documents there are below the depicted state machine diagrams (as for example depicted in figure 33) the corresponding state transitions listed as atomic mandatory functional
requirements:

Info | Initial

Req | {Initial - ST1}

Info | ST1

Req | Event_1/{ST1 -ST2}
Info | ST2

Req | Event_2/{ST2 -ST1}
Req | Event_3/Effect_1; {ST2 - ST3}
Info | ST3

Eu.ModSt.7580 A state is represented on the state machine diagram by a round-cornered box containing its name.

Eu.ModSt.7581 Kinds of states:

The following three kinds of states are distinguished:
* simple state (state with no regions and therefore without nested states),
* sequential state (state with exactly one region) and
» concurrent state (state with at least two regions)

Eu.ModSt.7582 Each state may contain entry and exit behaviour that are performed whenever the state is entered or exited respectively. Entry and exit behaviour are described as text expressions using the chosen action language preceded
by the keywords entry or exit and a forward slash.

Eu.ModSt. 7583 A state machine can contain transitions, called internal transitions, which do not effect a change in state. An internal transition has the same source and destination and, if triggered, simply executes the transition effect.

Eu.ModSt.7584 By contrast, an external transition with the same source and destination state - sometimes called a transition-to-self - triggers the execution of that state's exit and entry behaviour as well as the transition effect.

© EULYNX Partners Page 99 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.7585

Additional to the states, SysML includes a number of pseudostates to provide additional semantics. The difference between a state and a pseudostate is that a region can never stay in a pseudostate, which merely exists to help
determine the next active state.

Eu.ModSt.7586

The EULYNX methodology adopts the following SysML pseudostates:
¢ initial pseudostate,
« final state,
¢ choice pseudostate,
* fork pseudostate and
¢ join pseudostate.

Eu.ModSt.7587

Pseudostates have a defined name, that may be visible on the diagrams.

Eu.ModSt.7588

8.6.6.3 Initial pseudostate and final state

Eu.ModSt.7589

An initial pseudostate is shown as a filled circle. It is used to determine the initial state of a region (see Figure 7609). The outgoing transition from an initial pseudostate may include an effect. Such effects are often used to set
the initial values of properties used by the state machine (e.g. call operation cOp1_init() shown in Figure 7609).

Eu.ModSt.7590

A final state is shown as a bulls-eye (i.e. a filled circle surrounded by a larger hollow circle). It indicates that a region has completed execution. When the active state of a region is the final state, the region has completed, and
no more transitions take place within it. Hence, a final state can have no outgoing transitions.

Eu.ModSt.7591

8.6.6.4 Choice pseudostate

Eu.ModSt.7592

A choice pseudostate is shown as a white diamond with one transition arriving and two or more transitions leaving. It is used to construct a compound transition path between states. The compound transition allows more than
one alternative path between states to be specified, although only one path can be taken in response to any single event.

Eu.ModSt.7593

Multiple transitions may either converge on or diverge from the choice pseudostate. When there are multiple outgoing transitions from a choice pseudostate, the selected transition will be one of those whose guard evaluates to
true at the time after the choice pseudostate has been reached. This allows effects executed on the prior transition to affect the outcome of the choice.

Eu.ModSt.7594

When a choice pseudostate is reached in the execution of a state machine, there must always be at least one valid outgoing transition. If not, the state machine is invalid.

Eu.ModSt.7595

If a compound transition contains choice pseudostates, any possible compound transition must contain only one trigger, normally on the first transition in the path.

Eu.ModSt.7596

8.6.6.5 Fork pseudostate

Eu.ModSt.7597

A fork pseudostate is shown as a vertical or horizontal bar with transition edges either starting or ending on the bar.

Eu.ModSt.7598

It has a single incoming transition and as many outgoing transitions as there are orthogonal regions in the target state. Unlike choice pseudostates, all outgoing transitions of a fork are part of the compound transition. When an
incoming transition is taken to the fork pseudostate, all the outgoing transitions are taken.

Eu.ModSt.7599

Because all outgoing transitions of the fork pseudostate have to be taken, they may not have triggers or guards but may have effects.

Eu.ModSt.7600

8.6.6.6 Join pseudostate

Eu.ModSt.7601

A join pseudostate is shown as a vertical or horizontal bar with transition edges either starting or ending on the bar.

Eu.ModSt.7602

The coordination of outgoing transitions from a concurrent state is performed using a join pseudostate that has multiple incoming transitions and one outgoing transition. The rules on triggers and guards for join pseudostates
are the opposite of those for fork pseudostates.

Eu.ModSt.7603

Incoming transitions of the join pseudostate may not have triggers or a guard but may have an effect. The outgoing transition may have triggers, a guard and an effect.

Eu.ModSt.7604

When all the incoming transitions can be taken and the join's outgoing transition is valid, the compound transition can occur. Incoming transitions occur first followed by the outgoing transition.

Eu.ModSt.7605

8.6.6.7 Simple state

Eu.ModSt.7606

As shown in the examples depicted in Figure 427 (states ST1, ST2, ST3) and Figure 7609 (state "OPERATIONAL"), a simple state has no regions and therefore no nested states.

Eu.ModSt.7607

A simple state may, like any kind of state, contain entry behaviour, that is executed immediately upon entering the state, exit behaviour, that is executed immediately before exiting the state, and behaviour executed during
internal transitions. (see Figure 7609). All three kinds of behaviour are not interruptible.

© EULYNX Partners

Page 100 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.7608

Figure 34 shows a simple example of a FE defining the functionality "Indicate signal aspect" of a light signal (LS) with a single OPERATIONAL state in its single region. A transition from the region's initial pseudostate goes to the
OPERATIONAL state. On entry, the light signal indicates that it is operational, setting the value of the out port "D3_Operational” to true, and on exit it indicates a non operational status, setting the value of "D3_Operational" to
false. While the light signal is in the state OPERATIONAL, it may receive commands to indicate a transmitted signal aspect (T1_Cd_Indicate_signal_aspect) and indicate it (D2_Signal_aspect). When in the OPERATIONAL state,
the internal trigger "T4_SIL_not_fulfiled" triggers a transition to the final state, and because there is only one single region, the state machine terminates.

Eu.ModSt.7609

Figure 7609 Example of a simple state

e ™
stm F_Indicate_signal_aspect LS SR - Behaviour [LS STD 3]|
Initial pseudostate —» o
Efitiv behaviour [cOp1_init() Internal transition
: ol
-
(l OPERATIONAL S W
Entry/D3_Operational ;= true;
when(T1_Cd_Indicate_signal _aspect yD2_Signal_aspect = Dl_SEgnaI_aspect;
Exit/D3_Operational ;= false;
T when({ T4_SIL_ not_fulfilled ¥ T
— Simple state
Exit behaviour +—— Final state
. J

Eu.ModSt.7610

8.6.6.8 Transition

Eu.ModSt.7611

A transition specifies a change of state within a state machine. It is a directed relationship between a source and a destination state, and defines an event (trigger) and a guard (condition) that both lead to the state transition,
as well as an effect (behaviour) that is executed during the transition. Source and destination can be the same state (see T2 in Figure 7626).

Eu.ModSt.7612

Run to completion:
State machines always run to completion, which means that they are not able to consume another event until the state machine has completed the processing of the current event. Thus, the next event will be consumed only if
all effects (behaviour) of the previous event have been completed.

Eu.ModSt.7613

Run to completion does not mean that a state machine owned by a FE interconnected with neighbouring FE monopolises all FEs in this network until the run to completion step is complete.
The preemption restriction only applies to the context of the corresponding FE.

Eu.ModSt. 7614

An event that cannot be consumed, for example because there is no matching transition, is discarded.

Eu.ModSt.7615

Transition notation:
A transition is shown as an arrow between two states, with the head pointing to the target state.

Eu.ModSt.7616

Transitions-to-self are shown with both ends of the arrow attached to the same state (see T2 in Figure 7626).

Eu.ModSt.7617

Internal transitions are not shown as graphical paths but are listed on separate lines within the state symbol (see T7 in Figure 7626).

Eu.ModSt.7618

The definition of the transition's behaviour is shown in a formatted string on the transition with the event first, followed by a guard in square brackets, and finally the transition effect preceded by a forward slash (event-effect
block or even-action block). As shown in Figure 7626, any or all of the behavioural elements as event, guard and effect may be omitted. In T5 for example, all the behavioural elements are omitted. Transition T3, to give another
example, is only triggered by an event without guard and effect.

Eu.ModSt.7619

Event:
An event specifies some occurrence that can be measured with regard to location and time and causes a transition to occur. Descriptions of the triggering events are provided in chapter 8.6.6.9 Event.

Eu.ModSt.7620

Guard:

The transition guard contains an expression that must evaluate true in the moment of the triggering event so that the transition is performed (see T1, T4 and T7 in figure 35). The guard is specified using a constraint which
includes an expression formulated in the applied action language to represent the guard condition. If preceded by an event (see T1 and T7 in Figure 7626) and if the event satisfies a trigger, the guard on the transition is
evaluated. If the guard evaluates to true, the transition is triggered; if the guard evaluates to false, then the event is consumed with no effect.

© EULYNX Partners

Page 101 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.7621

Transitions can also be triggered by internally generated completion events. For a simple state a completion event is generated when the entry behaviour (for example Entry/effect3 in Figure 7626) has completed.

Eu.ModSt.7622

Thus, where a guard is shown without a preceding event (see T4 in Figure 7626), the guard condition is evaluated immediately after entering the source state, i.e. after its entry behaviour has completed, and a transition takes
place if true, triggered by the generated completion event of the source state.

Eu.ModSt.7623

Please note: if the guard condition of a transition without trigger changes to true while the state machine is already in the source state (for example in state ST2), the guard condition won't be evaluated and no transition will
take place.

Eu.ModSt.7624

Effect:

The effect is a behaviour executed when entering or exiting a state (entry and exit behaviour, respectively), during an internal transition (see T7 in Figure 7626) and during the external transition from one state to another (see
T1in Figure 7626). If an external transition is triggered, first the exit behaviour of the current (source) state, then the transition effect and finally the entry behaviour of the target state are executed.

Descriptions of the effects used in the methodology underlying this Modelling standard are provided in chapter 8.6.6.10 Effect.

Eu.ModSt.7625

A transition may also be formulated textually as atomic functional requirement:
Event [Guard]/Effect {Source state - Target state}.

Eu.ModSt.7626

Figure 7626 Transition notation

al ™
stm Transition_notation - Behaviour [STD 4] ‘
TE% event2/effect?2
L e e 12
|
g N
/
T1 ﬁ.---
event1[guard1]/effect
[guard 3]/ [f
(ST2 ——={_s13
Entry/effect3 T4
- [j
|-- event3[guard2]/effect4 Tﬁﬁ
Exit/effects
vy
n.___| eventd/ eventd/
@
b S/

Eu.ModSt.7627

8.6.6.9 Event

Eu.ModSt.7628

An event specifies some occurrence that can be measured with regard to location and time and causes a transition to occur.

Eu.ModSt.7629

In the EULYNX methodology, the following types of events are used:
e Change event,

e Time event

¢ Internal broadcast event

¢ Signal event.

Eu.ModSt.7630

8.6.6.9.1 Change event

© EULYNX Partners

Page 102 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.7631

A change event indicates that some condition has been satisfied, that is, the value of a specified Boolean expression holds. A defined change event occurs during system operation each time the specified Boolean expression
toggles from false to true. Change events are continuously evaluated.

Eu.ModSt.7632

According to the EULYNX methodology, the Boolean expression of a change event may contain the following arguments:
¢ Data In Port,
¢ block property
¢ block operation.

Eu.ModSt.7633

Notation of change events:
Change events use the term ,when" followed by the Boolean expression that has to be met in parenthesis. Like other constraint expressions, the Boolean expression is to be expressed in text using the applied action language:

when(boolean expression)[guard]/effect;

Eu.ModSt.7634

8.6.6.9.2 Time event

Eu.ModSt.7635

A time event indicates that a given time interval has passed since the current state was entered.

Eu.ModSt.7636

Notation of time events:
Time events use the term "after" followed by the time period (in milliseconds by default) in parenthesis, e.g. after(D1_Con_t1) as depicted in Figure 7638.

Eu.ModSt.7637

"after" indicates that the time is relative to the moment the state is entered. The transition T1 shown in Figure 7638 is, for example, triggered after the time D1_Con_t1 has expired. The time starts on entering the state ST1.

© EULYNX Partners

Page 103 of 119

Modelling Standard

ID Requirement

Eu.ModSt.7638
Figure 7638 Example of the usage of time events

ibd Usage_of time_events - Events [IBD 12]‘

«block»
Usage_of_time_events

values
«BlockProperty» Con_t2 : Integer = 1000

—| D1_Con_t1: Integer

e i
stm Usage_of_time_events - Behaviour [STD 12]‘
/
after{ 500)/
ST1)
T1 'j -----
T3 'j____
after{ D1_Con_t1)
Y after(Con_t2) |
2 | =l ST3 |
2
s vy

Eu.ModSt.7639 8.6.6.9.3 Internal broadcast event

Eu.ModSt. 7640 Internal broadcast events occur when corresponding SysML block operations are invoked. They are supposed to submit broadcasts within the state machine of a FE.

Eu.ModSt.7641 In Figure 7642 for example, the SysML block operations bcl_Bc_info() and bc2_Bc_info() represent internal broadcast events. During transition T1, the internal broadcast event bcl_Bc_info() is invoked in order to trigger
transition T3. Furthermore, during transition T4, the internal broadcast event bc2_Bc_info() is invoked to trigger transition T2.

© EULYNX Partners Page 104 of 119

Modelling Standard
ID

Requirement

Eu.ModSt.7642

Figure 7642 Example of the usage of internal broadcast events

ibd Usage of internal_broadcast_events - Events [IBD 13]|

ablocks»
Usage_of_internal_broadcast_events
Operation

«Operation» bc1_Bc info ()
«Operation» bc2_Bc _info ()

—| T1_Stimuli_1 : Pulsedin
|

T2 Stimuli_ 2 : Pulsedin

wde

. ™,
stm Usage of internal_broadcast _events - Behaviour [STD ’13]|
®
!
g ST A
ST1_1 bc2 Bc_info/ === Eﬁ
R ("
" SR | i SRR - Lt
bc1 Be info; T1 ﬁ
511 2 El
bc1 _Bc _info/
ST1 2 1 ' ST1.2 2
! ——_) SRR
T4 Iﬁ _____ when(T2_Stimuli_2 ¥bc2_Bc_info;
e .

Eu.ModSt.7643

8.6.6.9.4 Signal event

Eu.ModSt.7644

A signal event is generated when a reception of an interface block receives a signal. This is then used in the state model to trigger a state transition (1).

© EULYNX Partners

Page 105 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.7645

Figure 7645 Example of a signal event

| |
(RECEIVING_LIGHT_SIGNAL_COMMANDS
RECEIVING SIGNAL ASPECT °
niia"

P,)
(an RECEIVING_SIGNAL_ASPECTS
Cd_Indicate_Signal_Aspect{CommandedSignalAspectState = Signal_A spect_1j/d2out_Required_Signal_Aspect
Cd_Indicate_Signal_Aspect[CommandedSignaldspectState = Signal_A spect_27/d2out_Required_Signal_Aspect := "Signal Aspect 27;
Cd_Indicate_Signal_Aspect[CommandedSignalispectState = Most_Restrict_Aspectj/d2out_Required_Signal_Aspect := "Most Beatrict Aspect”™;
Entry/d2out_ Required_Signal_Aspect := "Unknown™;

]

tm "Signal Aspect 17;

Eu.ModSt.7646

8.6.6.10 Effect

Eu.ModSt.7647

An effect is a behaviour executed when entering or exiting a state (entry and exit behaviour, respectively), during an internal transition or during an external transition from one state to another.

Eu.ModSt.7648

The sequence of effect execution is demonstrated in figure 7649. Transition T1 is taken immediately on completion of effectl. The sequence of effect execution when event2 occurs (T3) is: effect4, then effect5, then effect2.
Eventl generates only one effect (T2): effect3.

Eu.ModSt.7649

Figure 7649 Sequence of effect execution

P
stm Effect_execution - Behaviour [STD 14] |

event? /feffectt

_____ 2k
R/
[Entry/effectd] —=|Entry/effect?
- event1/effects |------ g
T 'ﬁ Exitrefiectd

Eu.ModSt.7650

The following elements of behaviour may be represented as effect:
¢ Event-driven responses using signals,
* Responses in form of continuous flows,
e Call behaviour.

Eu.ModSt.7651

8.6.6.10.1 Event-driven responses using signals

Eu.ModSt.7652

As shown in Figure 7652, signals (1) are sent as an effect of a state transition or triggered in a block operation via the corresponding port (2) of the respective FE.

© EULYNX Partners

Page 106 of 119

Modelling Standard

ID Requirement
Eu.ModSt.7653
Figure 7653 Sending a signal
Stan_Status_ReponId@D bserved_Luminosity =
"Night"]/send Msg_Set_Luminosity (Night)y to P2ou:;
send Status_Report_Lompleted to p29inout;
Set_Luminosity { Night) o P2out; NIGHT
t_Luminosity (Day) seof P2out;
Luminosity { Night) ':-1 P2out; 1
Luminosity {Day) =¥ P2out; I
|
ibd [Ellnc&](F_SCI_LS_Repurt [Functicnal Viewpoint - Interface Requirements - Functional Entity]
P2out : SCI_LS_1
A
p2%inout F_|5'-Cl_3pecr‘ﬁl:
d9in_PDI_Cohnection_Stats - String
d15|m_0bse:=-ed_ﬂugnal_.ﬂ.speﬁ Stang
d20in_Observed_Intentionally_Dark : Boolean
d21in_Observed_Lumingsity : String

Eu.ModSt.7654

8.6.6.10.2 Responses in form of continuous flows

Eu.ModSt.7655

A response is sent in form of a continuous flow by assigning the desired value to a data out port, e.g. Dlout_Temperature := 40.

Eu.ModSt.7656

All out ports are initialised. The initialisation can be carried out in the body of the init-block operation systematically named cOp1_init(). Alternatively it can be carried out directly in the transition effect of the transition outgoing
from initial state of the state machine.

Eu.ModSt.7657

Furthermore, the sender of a response must always configure the current value of the Data Out Port.

Eu.ModSt.7658

8.6.6.10.3 Call behaviour

Eu.ModSt.1013

Call behaviour is invoked on demand, executed and terminated after execution. It is supposed to define event-driven data transformations. The algorithm of the data transformations is to be described in the body of the
corresponding block operation using ASAL (see chapter 8.6.8).

Eu.ModSt.551

Naming of Call behaviour
cOp<Id>_<behaviour name>,
Example: cOp2_establish_safe_state

Eu.ModSt. 1016

Id: Natural number starting with 1

Eu.ModSt.552

The call behaviour to initialise the block properties and out ports of a FE is to be named cOp1_init() systematically.

Eu.ModSt.7660

8.6.6.11 Composite state

© EULYNX Partners

Page 107 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.7661

States can have regions. Such states are called composite states or hierarchical states. They allow state machines to scale to represent state-based behaviour of any complexity. A composite state may have one single region
(sequential state) but also multiple orthogonal regions (concurrent state or orthogonal composite state).

Eu.ModSt.7662

Instead of using a region to decompose the behaviour of a state, a state machine diagram may be assigned to the corresponding state alternatively, defining its behaviour.

Eu.ModSt.7663

Each region or state machine diagram assigned to a state has a set of mutually exclusive disjoint subvertices and a set of transitions. In other words, it typically will contain an initial pseudostate and a final state, a set of
pseudostates, and a set of substates, which may themselves be composite states.

Eu.ModSt.7664

Any state enclosed within a region of a composite state is called a substate of that composite state.

Eu.ModSt.7665

8.6.6.12 Sequential state

Eu.ModSt.7666

A sequential state, such as ST2 shown in the example depicted in Figure 7674, is a composite state that has one region.

Eu.ModSt.7667

Figure 7674 shows the decomposition of the state ST2 into the substates ST2_1 and ST2_2. On entry to the state ST2, two entry behaviours are executed: the entry behaviour of ST2, T9_Response_1 := true and then the entry
behaviour of ST2_1, T15_Response_7 := true. This is because on entry, as indicated by the initial pseudostate, the initial substate of ST2 is ST2_1.

Eu.ModSt.7668

When in state ST2_1, T2_Stimulus_2 will cause the transition T2 to the state ST2_2 and will successively process T16_Response_8 := true, T12_Response_4 := true and T13_Response_5 := true. If T5_Stimulus_5 is received
while in state ST2_2, the change event will trigger the transition T4 to the final state. A completion event is generated when the final state is reached, triggering the transition T5 to state ST1. When leaving ST2, T11_Response_
3 := true is executed.

Eu.ModSt.7669

A composite state (sequential state or concurrent state) may be porous, which means transitions such as transition T3 and T6 shown in Figure 7674 may cross the state boundary, starting or ending on states within its regions.

Eu.ModSt.7670

In the case of a transition ending on a nested state, such as transition T6 shown in Figure 7674, the behaviours are executed in this order:
1. the effect T14_Response_6 := true of the transition T6,
2. the entry behaviour T9_Response_1 := true of the composite state,
3. the entry behaviour T13_Response_5 := true of the transition's target nested state.

Eu.ModSt.7671

In the opposite case, such as transition T3 shown in Figure 7674, the behaviours are exited in this order:
1. the exit behaviour T16_Response_8 := true of the source nested state,
2. the exit behaviour of the composite state T11_Response_3 := true is executed,
3. the transition effect T17_Response_9 := true.

Eu.ModSt.7672

In the case of more deeply nested state hierarchies, the same rule can be applied recursively to all the composite states whose boundaries have been crossed.

Eu.ModSt.7673

If T1_Stimulus_1 is received while in state ST2, the change event will trigger the internal transition T7 and the effect T10_Response_2 := true will be executed without a change of state.

© EULYNX Partners

Page 108 of 119

Modelling Standard

ID Requirement
Eu.ModSt.7674
Figure 7674 Example of a sequential state
o ; : N
stm Sequential_state - Behaviour [STD 19] |
Sequential state ____{ ST N
_ _ Entry/T9_Response_1 = true;
ST1 when(T3 Stimulus 3) \yhen(T1_Stimulus_1 YT10_Response 2 := true]| T7 ﬁ
3 | Exit/T11_Response_3 = true;
™
Region ofthe
J; sequential state
when(T4 Stimulus_4) - W
T17 _Response 9 = true; ST2_1
: Entry/T15_Response_7 = frue;
|
! \Exitfﬂ 6_Response_8 = true
i
T % when({ T2 _Stimulus_2 W
-~ T12_Response_4 := true;
when(T6_Stimulus_6 -
T14_Response_6 := true: ST2_2 |
E fntwa1 3 Response 5 = true; |
TB when{ Ts_Stimulus_5)/
T4 Bf———
TS5 ﬁ 3)
1
s s

Eu.ModSt.7675

8.6.6.13 Concurrent state

Eu.ModSt.7676

A concurrent state as shown in Figure 7683, sometimes also called an orthogonal composite state, contains at least two regions.

Eu.ModSt.7677

When a concurrent state is active, each region has its own active state that is independent of the others, and any incoming event is independently analysed within each region.

Eu.ModSt.7678

A transition that ends on the concurrent state, such as transition T1 in Figure 7683, will trigger transitions from the initial pseudostate of each region, so there must be an initial pseudostate in each region for such a transition to
be valid.

Eu.ModSt.7679

Similarly, a completion event for the concurrent state will occur when all the regions are in their final state.

Eu.ModSt.7680

When an event, as for example the internal broadcast event bcl_Bc_info shown in Figure 7683, is associated with triggers in multiple orthogonal regions, the event may trigger a transition in each region (e.g. transitions T3 and
T5), assuming the transition is valid based on the other usual criteria.

Eu.ModSt.7681

Please note: a transition can never cross the boundary between two regions of the same concurrent state.

Eu.ModSt.7682

In addition to transitions that start or end on the concurrent state, such as transition T1 in Figure 7683, transitions from outside the concurrent state may start or end on the nested states of its regions. In this case, one state in
each region must be the start or end of one of a coordinated set of transitions. This coordination is performed by a fork pseudostate in the case of incoming transitions, such as T8.1, T8.2 and T8.3 in Figure 7683, and a join
pseudostate for outgoing transitions, such as T6.1, T6.2 and T6.3 in Figure 7683.

© EULYNX Partners

Page 109 of 119

Modelling Standard

ID Requirement

Eu.ModSt.7683
Figure 7683 Example of a concurrent state

rfﬁm Concurrent_state - Behaviour [STD 20] |

.'I.

"NhEl-Il:- T5 Stimulus 5]J.' W'hErlliTE_Stim L||L|S_Ei]_l'.
— — =] STH
™S .. when(T3_Stimulus_3)
i ST2

Entry/T9_Response_1 = true;

[
when{ T1_Stimulus_1 ¥bc1_Bc_info;

_____ 6.1 ﬁ Exit/T11_Response_3 = true;
2 P T8 “F-{
when{ T2_Stimulus_2 ¥
T6.2 : T12_Response_4 = true; "
' . T8.2
I 1
: [, 1
! T2 !
jm <7 4
R :
i bel_Be_info/ g
: |
Join pseudostate Region 1 of the concument state !
-------------------------------------- Fork pseudostate
ST 2.2 Region 2 of the concument state
/ ,
when(T4_Stimulus_4 ¥
T12_Response_4 = true; -
|
T4 " (]-%
STE_2_1D - E‘j 3 BLger —
bc1 _Bc _info/
R -

Concurrent state or othogonal composite state
. A

Eu.ModSt.7684 | 8.6.6.14 Decomposition of states using state machine diagrams

Eu.ModSt.7685 Instead of decomposing the behaviour of a state within a region of a sequential state or multiple regions of a concurrent state, the behaviour may alternatively be specified by a state machine diagram assigned to the
corresponding state (see Figure 7689).

Eu.ModSt.7686 The region of the corresponding state machine diagram typically will contain an initial pseudostate and a final state, a set of pseudostates, and a set of substates, which themselves may be decomposed by state machine
diagrams.

Eu.ModSt.7687 As illustrated in Figure 7689, a transition (e.g. transition T1) ending on a state (e.g. state ST2) that is refined by a state machine diagram will trigger the transition from the initial pseudostate of the diagram to its initialising
state (e.g. state ST2_1).

© EULYNX Partners Page 110 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.7688

Similarly, when the behaviour specified on the state machine diagram completes (e.g. the final state is entered after triggering the transition T2), it will generate a completion event that can trigger transitions (e.g. transition T3)
whose source is the state (e.g. state ST2) the state machine diagram is assigned to.

Eu.ModSt.7689

Figure 7689 Principle of decomposing states by means of state machine diagrams

'fstm Decomposition_of states_using _state_machine _diagrams - Behaviour [STD 21]

when(T1_Stimulus_1)/ (ST2

— | oo

| pal
b :féf] f/fﬂig;h1es;
/

stm ST2 [STD 21 .1]‘

!
ST2 1

when(T2 Stimulus_2)/

Eu.ModSt.7690

8.6.6.15 Transition firing order in nested state hierarchies

Eu.ModSt.7691

The same event may trigger transitions at several levels in a state hierarchy, and with the exception of concurrent regions, only one of the transitions can be taken at a time. Priority is given to the transition whose source state
is innermost in the state hierarchy.

Eu.ModSt.7692

Suppose the state machine depicted in Figure 7695 is in its initial state (i.e. in state ST1_1_1 and ST1_2_1). The stimulus T1_Stimulus_1 is associated with the triggers of the transitions T1, T2 and T3, each with guards based
on the value of D2_No.

Eu.ModSt.7693

The following list shows the transitions that will fire upon receipt of T1_Stimulus_1 based on values of D18_No from -1 to 1 if the system is in the states ST1_1_1 and ST1_2_1:
¢ D2_No equals -1: transition T3 will be triggered because it is the only transition with a valid guard;
* D2_No equals 0: transition T1 will be triggered because, although transition T3 also has a valid guard, state ST1_1_1 is the innermost of the two source states; or
¢ D2_No equals 1: both transitions T1 and T2 will be triggered because both their guards are valid.

Eu.ModSt.7694

The normal rules for execution of exit behaviour apply, so, before the transition from state ST1 to state ST2 can be taken, any exit behaviour of the active nested states of state ST1, as well as the exit behaviour of state ST1,
must be executed.

© EULYNX Partners

Page 111 of 119

Modelling Standard

ID Requirement

Eu.ModSt.7695
Figure 7695 Illustration of transition firing order

=3
rfﬁr‘n Transition_firing_order - Behaviour [STD 22] |
l N
ST1
ST1_1
when{ T1_Stimulus_1)[D2 Mo == 0]/
ST1_ 1.1 v = 5T 4. |
T
st 2
when{ T1 Stimulus 1)02 MNo == 1)/
ST1.2 1 T SI1 23 |
i
~
T3 71--| when(T1_Stimulus_1)[D2_No <= 0]/
[sT2]
S Iy

Eu.ModSt.1078 8.6.6.16 Interaction between state machines

Eu.ModSt.1082 State machines in different blocks, may interact with one another by sending stimuli and returning responses. For example, the state machine of one block can send a stimulus to another block as part of a transition effect or
state behaviour. The event corresponding to the receipt of this stimulus by the receiving block can trigger a state transition in its state machine.

Eu.ModSt.1083 Thus, different behaviour, each specifying a certain functionality of the system, may be encapsulated in blocks and interconnected with each other in a network of FEs or TFEs, i.e. in a Functional or Technical Functional
Architecture.

Eu.Modst.7831 | 8.6.7 Bindings (see chapter 8.2. 1)

Eu.ModSt.7833 Diagram of model view "Functional Entity" (ibd and stm) has a "Req" binding.

Eu.ModSt.7834 Diagram of model view "Technical Functional Entity" (ibd and stm) has a "Req" binding.

Eu.ModSt.7837 The algorithm defined in a time advanced operations has a "Req" binding.
The algorithm defined in a time advanced operation represents the mandatory externally visible behaviour of a FE or TFE in place of or in cooperation with a state machine.

Eu.ModSt.7839 Transitions, states, ports, block operations and block properties have "Def" bindings.

Eu.ModSt.7537 | 8.6.8 Action language

Eu.ModSt.7538 The EULYNX methodology follows the objective of creating executable specification models. In order to specify the necessary executable behaviours in a target language independent way, the Atego Structured Action Language
(ASAL) is used.

Eu.ModSt.7539 ASAL is used to specify block operations or Event Action Blocks that define the transition effects on state machine diagrams.

Eu.ModSt.1940 A description of data types, logical operators and basic statements of the Atego Structured Action Language (ASAL) is provided below.

Eu.ModSt.7541 | 8.6.8.1 Logical operators

© EULYNX Partners Page 112 of 119

Modelling Standard

ID

Eu.ModSt.7542

Requirement

e Greater than: >

e Less than: <

e Greater than or equal: >=
e Less than or equal: <=
e Equal: =

* Not equal: <>
¢ Conjunction: AND
e Disjunction: OR
¢ Negation: NOT
e Exclusive disjunction: XOR

Eu.ModSt.7840

The logical operators "AND", "OR", "NOT" and "XOR" are to be written in capital letters.

Eu.ModSt.7543

8.6.8.2 Data types

Eu.ModSt.7544

As the EULYNX specification approach follows the objective of creating executable specification models, the range of data types is limited to data types the simulation tool SySim supports (SySim value types).

Eu.ModSt.294

Only the SySim value types, including the redefined data types "PulsedIn" and "PulsedOut" may be used for the specification of systems requirements :
* Boolean
e DateTime
* Single
e String
¢ Decimal
¢ Double
e Long
e Integer
e Timespan
e PulsedIn
¢ PulsedOut

Eu.ModSt.7546

The data types “PulsedIn” and “PulsedOut” represent redefinitions of the data type Boolean and are exclusively reserved to be assigned to Trigger Ports (T-Ports). That is, a Trigger In Port is typed with the data type "PulsedIn"
and a Trigger Out Port with the data type "PulsedOut".

Eu.ModSt.7547

Outgoing data typed with “PulsedOut” (as default false) that are set to true (for example, Tlout_Cd_indicate_signal_aspect := true) automatically change back to false after a defined time. The defined time frame is sufficient to
trigger a transition in a receiving state machine.

Eu.ModSt.7548

Incoming data at receiver side typed with “PulsedIn” apply the behaviour of the corresponding outgoing data at sender side typed with “PulsedOut”.

Eu.ModSt.7906

For the typing of proxy ports, the specially adapted interface blocks are to be used:
e IBoolean
¢ IDateTime
e IDecimal
e IDouble
e IInteger
e Jlong
e ISingle
e IString

Eu.ModSt.7907

The data types "PulsedIn” and "PulsedOut" can only be used with flow ports but not in connection with proxy ports.

Eu.ModSt.269

8.6.8.3 Declaring variables

Eu.ModSt.270

The Declare statement declares local variables.

The syntax is as follows:

declare <variable list> : <type> ;

Where:

* <variable list> - specifies a list of variables that are being declared. For each variable an optional initial value can be set through the ':=' assignment operator.
- <type> - specifies the type of the variables that are being declared.

© EULYNX Partners

Page 113 of 119

Modelling Standard

ID

Requirement

Example:

declare A : Boolean;

declare B := False : Boolean;
declare C, D := 0 : Integer;

Eu.ModSt.7549

8.6.8.4 Reading the value of a port

Eu.ModSt.7550

The value of a port may be read using the name of the port on its own:
The syntax is as follows:
<A> := <port>;
Where:
<port> specifies the port whose value is being read.
<A> specifies for example the value property the value of the port is to be assigned to.

Example:
Mem_D1_Signal_aspect := D1_Signal_aspect;

Eu.ModSt.7551

8.6.8.5 Setting the value of a port

Eu.ModSt.7552

The value of a port may be set using the name of the port:
The syntax is as follows:

<port> := <value>;

Where:

* <port> - specifies the port whose value is being set.

* <value> - specifies the value that is being set for the port.

Example:
T1_Cd_Indicate_signal_aspect : = true;

Eu.ModSt.7553

8.6.8.6 Calling an operation

Eu.ModSt.7554

To call an Operation item in ASAL, reference the Operation with its default (the default is 'This"). You must use parentheses for the operation, even if there are no parameters to pass.
The syntax is as follows:

<operation> ([<parameters>]);

Where:

- <operation> - specifies the operation that is being called.

By default, the Operation is called against 'This'.

* <parameters> - specifies any parameter values that are passed to the operation that is being called.

Examples:
MyOperation(True);
OperationWithNoParameters();

Eu.ModSt.7555

8.6.8.7 Assigning values to variables

Eu.ModSt.7556

Values can be assigned to variables.

The syntax is as follows:

<variable> := <expression> ;

Where:

* <variable> - specifies the variable that is being assigned.

* <expression> - specifies the value that is being assigned, which can be defined through an expression.

Example:
Mem_ped_wait := False;

Eu.ModSt.7557

8.6.8.8 Conditional execution of code

© EULYNX Partners

Page 114 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.7558

The if, then, else statements provide a mechanism for conditional execution of code.
The syntax is as follows:

if <condition> then

... //code to execute

elseif <condition> then

... //code to execute

else

... //code to execute

end if

Where:

* <condition> - specifies the condition that is being tested.

Example:

if A < 100 then
A=A+1;

elseif B < 100 then
B:=B+1;

else

NowStop := True;
end if

Eu.ModSt.7559

8.6.8.9 While loops

Eu.ModSt.7560

The while loop provides a mechanism for executing code while a condition is true.
The syntax is as follows:

while <condition>

... //code to execute

end while

Where:

* <condition> - specifies the condition that is being tested.

Example:
while A < 100
A=A+1;
end while

Eu.ModSt.7561

8.6.8.10 Case selection

Eu.ModSt.7562

The case selection provides a mechanism for executing code when a case is true.
The syntax is as follows (note that there can be many cases):

select case <condition>

case <condition>:

... //code to execute

case else:

... //code to execute

end select

Where:

* <condition> - specifies the condition that is being tested.

Example:

select case A + B
case 200:
ResultIs200 := True;
case else:
ResultIs200 := False;
end select

Eu.ModSt.7563

8.6.8.11 Return statement

© EULYNX Partners

Page 115 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.7564

The Return statement can return the result of an expression.
The syntax is as follows:

return <expression> ;

Where:

* <expression> - specifies the expression that returns the result.

Example:
return A + B;

Eu.ModsSt.287

8.6.8.12 Comments

Eu.ModSt.288

The Comment statement specifies text that is ignored by the target language.
The syntax is as follows for single line comments:

/] <text>

Where:

- <text> - specifies the text that is generated as a comment.

Eu.ModSt.289

Example:
// return the sum of A + B

Eu.ModSt.290

8.6.8.13 Example program written in ASAL

Eu.ModsSt.291

This is an example program that is written in ASAL.

declare A := 0, B: Integer; // Former declared variable initialized, latter is not. Both share the same type
declare GoOn := True : Boolean;

declare NowStop := False : Boolean;

B := 0; // Assignment

NowStop := not B = 0 AND (GoOn or NowStop); // Assignment (it's False) using a logical expression
while GoOn AND NOT NowsStop do // While loop

if A < 100 then // Condition ... if

A=A+1;
elseif B < 100 then // Condition, elseif
B:=B+1;

else // Condition, else

NowStop := True;

end if // end of condition.

end while

declare TestOk : Boolean;

select case A + B // Selection statement. It's similar to C/C++ switch (but no “break”, only one case is executed at most)
case 199 + (A + B) / (A + B): // Case expression, equates to 200
TestOk := True;

case else: // Default case

TestOk := False;

end select

return A + B; // Return statement

Eu.ModSt.825

9 References

Eu.ModSt.826

[1] OMG Systems Modeling Language (OMG SysML ™),https://sysml.org/.res/docs/specs/OMGSysML-v1.6-19-11-01.pdf

Eu.ModSt.827

[2] OMG Unified Modeling Language TM (OMG UML), https://www.omg.org/spec/UML/2.5.1/PDF

Eu.ModSt.828

[3] KnowGravity Inc., RIAL Risk Analysis 10, 30.11.2014

Eu.ModSt.829

[4] M. Broy, K. Stglen, Specification and development of interactive systems, Focus on streams, interfaces, and refinement, Springer-Verlag New York, Inc, 2001

Eu.ModSt.830

[5] T. Weilkiens, Systems Engineering with SysML/UML, Modeling, Analysis, Design, dpunkt.verlag GmbH, Heidelberg, Germany, 2006

Eu.ModSt.831

[6] J. Braband, B-E. Brehmke, S. Griebel, H. Peters, K-H Suwe, The CENELEC-Standards regarding Functional Safety, Eurailpress, 2006

Eu.ModSt.832

[7] H. Kdnig, Protocol Engineering, B. G. Teubner Verlag, 2003

© EULYNX Partners

Page 116 of 119

Modelling Standard

ID

Requirement

Eu.ModSt.833

[8] R.J. Wieringa, Design methods for reactive systems, Elsevier Sience (USA), 2003

Eu.ModSt.834

[9] KnowGravity Inc., Modelling Interlocking Requirements using UML, A Guideline, UIC/Euro-Interlocking, 2002

Eu.ModSt.835

[10] M. Debbabi, F. Hassaine, Y. Jarraya, A. Soeanu, L. Alawneh, Verification and Validation in Systems Engineering, Springer-Verlag Berlin Heidelberg, 2010

Eu.ModSt.836

[11] T. Koch, Rechnergestiitzter Sicherheitsnachweis: Ein Verfahren zum Ausschluss gefahrlicher Systemzustande in rechnergesteuerten Eisenbahn- Sicherungsanlagen, Dresden: Technische Universitat, Fakultat
Verkehrswissenschaften ,Friedrich List", Diss. 1997

Eu.ModSt.837

[12] M. Burkhard, M. Hoeft, Bericht Zielarchitektur ESTW, Deutsche Bahn AG Systemverbund Bahn VTZ 12, Stand 0.92, 18.01.2009

Eu.ModSt.838

[13] Atego Modeler, Help

Eu.ModSt.839

[14] http://de.ptc.com/application-lifecycle-management/integrity/modeler

Eu.ModSt.840

[15] http://de.ptc.com/application-lifecycle-management/integrity/modeler/sysim

Eu.ModsSt.841

[16] http://de.ptc.com/application-lifecycle-management/integrity/modeler/reviewer

Eu.ModSt.842

[17] CENELEC: EN 50126, Railway Applications - The Specification and Demonstration of Reliability, Availability, Maintainability and Safety (RAMS)

Eu.ModSt.843

[18] 1. Ernst, Das Sp Dr S60-Stellwerk, Eisenbahn-Fachverlag, Heidelberg/Mainz, 1978

Eu.ModSt.844

[19] O. Lemke, A. Harhurin, K-D Sievers, Systems-Engineering-Prozess flir LST-Anwendungen unter Beriicksichtigung aktueller Normen, DB Netz AG- I.NVT 31, 2011

Eu.ModSt.845

[20] I. Jacobson, M. Griss and P. Jonsson, Software Reuse: Architecture Process and Organisation for Business Success, Addison-Wesley 1997

Eu.ModSt.846

[21] Shane Sendall and Alfred Strohmeier, From use cases to system operation specifications, In Stuart Kent and Andy Evans, editors, UML 2000 - The Unified Modeling Language: Advancing the Standard, Third International
Conference, volume 1939 of LNCS. Springer, 2000

Eu.ModSt.847

[22] Alistair Cockburn, Writing Effective Use Cases, Addison Wesley, 2001.

Eu.ModSt.848

[23] Heldal Rogardt, Use Cases are more than System Operations, Chalmers University of Technology, Gothenburg, Schweden.

Eu.ModSt.889

[24] Sanford Friedenthal, Alan Moore, Rick Steiner, A Practical Guide to SysML, Third Edition: The Systems Modeling Language, The MK/OMG Press, 2015.

Eu.ModSt.1495

[25] Klaus Pohl, Harald Hénninger, Reinhold Achatz, Manfred Broy, Model-Based Engineering of Embedded Systems, The SPES 2020 Methodology, Springer-Verlag Berlin Heidelberg 12.

Eu.ModSt. 1469

[26] Klaus Pohl, Manfred Broy, Heinrich Daembkes, Harald Honninger, Advanced Model-Based Engineering of Embedded Systems, Extensions of the SPES 2020 Methodology, Springer International Publishing AG 2016.

Eu.ModSt. 1477

[27] Christer Léfving, Arne Boralv, Formal Methods Taxonomy and Survey, X2Rail-2 Deliverable D5.1, 16.05.2018

Eu.ModSt.1502

[28] https://de.mathworks.com/products/simulink.html

Eu.ModSt. 1517

[29] The Institute of Electrical and Electronics Engineers, Inc.: IEEE Recommended Practice for Architectural Description of Software-Intensive Systems. IEEE Std. 1471-2000. New York, 2000

Eu.ModSt.1568

[30] Osamu Shigo, Atsushi Okawa, Daiki Kato: Constructing Behavioral State Machine using Interface Protocol Specification, 13th Asia Pacific Software Engineering Conference (APSEC'06), IEEE 2006

Eu.ModSt.3552

[31] https://www.eulynx.eu/

Eu.ModSt.7072

[32] Deliverable D10.2 Proposed extension of specification approach to meet needs of RCA, WP 10, X2Rail-5, 13.01.2022

Eu.ModSt.7911

10 Appendix A - Reference Tool Chain

Eu.ModSt.7916

A tool chain that fully supports the EULYNX MBSE process is shown below and is intended to be a reference for the use of alternative tools. When using alternative tools, make sure that they have the same capabilities.

Eu.ModSt.302

The EULYNX MBSE process is currently supported by a toolchain as illustrated in Figure 3553. It enables the creation of SysML specification models (Windchill Modeler), static checks for completeness, correctness, and

consistency (Windchill Reviewer) and simulation-based validation of the models (Windchill Modeler SySim and MS Visual Studio). A connection to IBM Rational DOORS (Windchill Integration for IBM Rational DOORS) enables the

representation of specification model elements in the form of atomic requirements in the requirements management tool. They can be transformed into the standardised Requirements Interchange Format (ReqglIF) and
exchanged with suppliers using Windchill Requirements Connector.

© EULYNX Partners

Page 117 of 119

Modelling Standard

ID Requirement
Eu.ModSt.3553
Figure 3553 EULYNX Tool chain
Windchill Modeler

n Yo 1k g L v 1.0 P gy s - & = Wirldl:hi“

Sy e, T . Integration IBM Rational DOORS
for IBM Rational - S

B DOORS

P -

o
b |..__—.‘_.._ i __‘ A __|

Windchill Modeler Windchill Modeler SySim
Reviewer

Windchill
Requirements
Connector

MS Visual Studio

Eu.ModSt.303

10.1 Windchill Modeler

Eu.ModSt.304

Windchill Modeler [14], an all-in-one integrated collaborative development tool suite, is used to create the EULYNX SysML specification models. It provides systems and software modelling and component-based development
targeted for technical systems and provides comprehensive notation support for the leading industry standards, including OMG SysML, OMG UML, UPDM (DoDAF and MODAF), OVM, data modelling, and architectural frameworks.

Eu.ModSt.3554

10.2 IBM Rational DOORS

Eu.ModSt.3557

Requirements management tool IBM Rational DOORS is used to organise the specification contents in a format conforming to classical requirements management (atomic requirements with unique identifiers and allocated
bindingness). The requirements are structured in the form of DOORS-objects in the DOORS-modules representing the specification documents. The specification models created in the Windchill Modeler are represented as
surrogates in the DOORS-modules structured in the form of atomic requirements.

Eu.ModSt.3555

10.3 Windchill Integration for IBM Rational DOORS

Eu.ModSt.3558

Windchill Modeler is connected to the requirements management tool IBM Rational DOORS via the Windchill Integration for IBM Rational DOORS. This connection enables the creation and synchronisation of surrogates of the

specification models in the requirements management tool.

Eu.ModSt.3556

10.4 Windchill Requirements Connector

Eu.ModSt.3559

Windchill Requirements Connector is used to transform DOORS-modules into Requirements Interchange Format (ReqIF) and retransform ReglIF files into DOORS format.

Eu.ModSt.305

10.5 Windchill Modeler SySim

© EULYNX Partners

Page 118 of 119

Modelling Standard

ID Requirement

Eu.ModSt.306 Windchill Modeler SySim [15] is used together with Windchill modeler and MS Visual Studio to create executable specifications (virtual prototypes) from SysML specification models and validate their behaviours by means of
simulation-based testing. That way it is ensured that the corresponding specification model is consistent and formally correct without the need to focus on lower-level details such as code generation or target environments.

Eu.ModSt.307 Furthermore, Windchill Modeler SySim allows the generation of appropriate and intuitive simulation graphics. Graphical components are automatically prepared in an MS Visual Studio toolbox, from which they can be dropped
onto a form to create each user interface, for a given simulation scenario. Predefined graphical components are also provided for the most common functions, such as input and output. Developing new graphical components is
also made easy, using the de-facto standard Microsoft .NET platform.

Eu.ModSt.308 10.6 MS Visual Studio

Eu.ModSt.309 MS Visual Studio is applied to create graphical user interfaces used to play through simulation scenarios and build executables from simulation code generated by Windchill Modeler SySim.

Eu.ModSt.310 10.7 Windchill Modeler Reviewer

Eu.ModSt.311 Windchill Modeler Reviewer [16] provides a quick way of reviewing items in a model using provided and optionally user-defined reviews. EULYNX SysML specification models can quickly be checked for completeness, correctness
and consistency using the corresponding reviews. Summary reports may be created that provide statistical analysis of review failures and metrics relating to items in a model. Furthermore, user-defined reviews may be created
to include in reports.

© EULYNX Partners Page 119 of 119

