48 EULYNX =

EULYNX Initiative Europe’s Rail Joint Undertaking

Modelling Standard

Document number: Eu.Doc.30
Version: 4.1 (0.A)

© EULYNX Partners

Modelling Standard

1
1.1
1.2
1.3

1.3.1
1.3.2
1.4
1.5

2

3
3.1
3.2

5.1
5.2
5.2.1

6

7
7.1
7.2
7.3

8

8.1
8.1.1
8.1.1.1
8.1.1.2
8.1.1.3
8.1.14
8.1.1.5
8.1.2
8.1.2.1
8.1.2.1.1
8.1.2.1.2

© EULYNX Partners

Contents

Miscellaneous
Release information
Impressum
Purpose
About this Modelling Standard
Audience
Terms and abbreviations

Related documents
Abbreviations

Introduction
Motivation
Structure of the Modelling Standard

MBSE Specification Framework

Modelling Language
Systems Modeling Language (SysML)
Action Language
The role of data types

Tools

User Requirements
Overview
Safety requirements

Formulation of user requirements

Architecture Model MBSE
Overview of the EULYNX MBSE methodology
Characteristics of EULYNX subsystems
System
Reactive system
Control system
Typical control loop of a EULYNX subsystem
Interpretation of the concept of "Function"
Principle of model-based definition of requirements
Applied description methods for model-based requirements
Operational specification

Stimulus-response specification

Table of Contents

N N N N N N = =

N

N

10
10
10
11

11

11
11
12
12

13
15
15
15
16
16
16
18
19
19
19
20

Modelling Standard
8.1.2.1.3
8.1.2.1.4

8.1.3
8.1.3.1
8.1.3.2

8.2

8.2.1

8.2.2

8.2.3
8.2.3.1
8.2.3.2
8.2.3.3
8.2.3.4
8.2.3.5

8.2.4

8.2.5

8.3

8.3.1

8.3.2
8.3.2.1
8.3.2.2
8.3.2.3

8.3.3

8.3.4
8.34.1
8.3.4.2
8.3.4.3

8.3.5

8.3.6
8.3.6.1
8.3.6.2
8.3.6.3

8.3.7

8.3.8
8.3.8.1
8.3.8.2
8.3.8.3

8.3.9

8.3.10
8.3.10.1
8.3.10.2
8.3.10.3

© EULYNX Partners

Description method using use case scenarios

Description method using state machines

Overview introduction to the EULYNX MBSE Process

Engineering path SUS

Engineering path SIUS

Model views - General modelling rules

Binding nature of the requirements and their structuring
Modelling Pattern for interlocking systems

Introduction of the basic structural model elements

Logical Structural Entity (LSE)

Functional Entity (FE)

Environmental Structural Entity (ESE)

Technical Structural Entity (TSE) or Technical Functional Entity (TFE)
Information objects

Interface centric specification

Functional packaches

Model views used to specify EULYNX subsystems

Model View "Functional Context" of a SUS (AL1) - Description
Model View "Functional Context" of a SUS (AL1) - Modelling rules
SysML Diagram

Model elements

Binding (see chapter 8.2.1)

Model View "Use case scenario" of a SUS (AL1) - Description
Model View "Use case scenario" of a SUS (AL1) - Modelling rules
SysML diagram

SysML model elements

Binding (see chapter 8.2.1)

Model View "Logical Context" of a SUS (AL1) - Description

Model view "Logical Context" of a SUS (AL1) - Modelling rules
SysML diagram

Model elements

Binding (see chapter 8.2.1)

Model view "Functional Partitioning" of a SUS (AL2) - Description
Model view "Functional Partitioning" of a SUS (AL2) - Modelling rules
SysML diagram

Model Elements

Binding (see chapter 8.2.1)

Model view "Functional Architecture" of a SUS (AL2) - Description
Model view "Functional Architecture" of a SUS (AL2) - Modelling rules
SysML diagram

Model elements

Binding (see chapter 8.2.1)

Table of Contents
22
26
27
35
39
41
44
45
48
48
49
49
49
50
50
51
51
52
53
53
54
56
56
57
57
60
74
74
76
76
76
78
78
79
79
80
80
80
82
82
82
83

Modelling Standard
8.3.11
8.3.12

8.3.12.1
8.3.12.2
8.3.12.3
8.4
8.4.1
8.4.2
8.4.2.1
8.4.2.2
8.4.2.3
8.4.3
8.4.4
8.44.1
8.4.4.2
8.4.4.3
8.4.5
8.4.6
8.4.6.1
8.4.6.2
8.4.6.3
8.4.7
8.4.8
8.4.8.1
8.4.8.2
8.4.8.3
8.5

8.6
8.6.1
8.6.2
8.6.3
8.6.4
8.6.4.1
8.6.4.2
8.6.4.2.1
8.6.4.2.2
8.6.5
8.6.5.1
8.6.5.2
8.6.6
8.6.6.1
8.6.6.2

© EULYNX Partners

Model view "Technical Functional Architecture" of a SUS (AL2) - Description
Model view "Technical Functional Architecture" of a SUS (AL2) - Modelling rules
SysML diagram

Model elements

Bindings (see chapter 8.2.1)

Model views used to specify EULYNX interfaces

Model view "Logical Context" of a SIUS (AL1) - Description

Model view "Logical Context" of a SIUS (AL1) - Modelling rules

SysML diagram

Model elements

Bindings (see chapter 8.2.1)

Model view "Functional Partitioning" of a SIUS (AL2) - Description
Model view "Functional Partitioning" of a SIUS (AL2) - Modelling rules
SysML diagram

Model elements

Bindings (see chapter 8.2.1)

Model view "Functional Architecture" of a SIUS (AL2) - Description
Model view "Functional Architecture" of a SIUS (AL2) - Modelling rules
SysML diagram

Model elements

Bindings (see chapter 8.2.1)

Model view "Information Flow" of a SIUS (AL2) - Description

Model view "Information Flow" of a SUS - Modelling Rules

SysML diagram

Model elements

Bindings (see chapter 8.2.1)

Model views "Functional Entity" and "Technical Functional Entity" - Description

Model views "Functional Entity" and "Technical Functional Entity" - Modelling rules

SysML Diagram

Block

Model elements - Block properties

Model elements - Block operations

Internal broadcast events

Definition of algorithms for data transformation
Call behaviour

Time advance behaviour

Model elements - Ports

Atomic SysML in ports and out ports

SysML proxy ports to describe a signal-based communication
Model elements - state machines

Region

State

Table of Contents
83
85
85
85
86
86
87
88
88
88
88
88
89
89
89
89
89
90
90
90
90
90
92
92
92
92
93
93
93
94
94
95
95
96
96
96
96
96
98
98
99
99

Modelling Standard
8.6.6.3
8.6.6.4
8.6.6.5
8.6.6.6
8.6.6.7
8.6.6.8
8.6.6.9

8.6.6.9.1
8.6.6.9.2
8.6.6.9.3
8.6.6.9.4
8.6.6.10
8.6.6.10.1
8.6.6.10.2
8.6.6.10.3
8.6.6.11
8.6.6.12
8.6.6.13
8.6.6.14
8.6.6.15
8.6.6.16
8.6.7
8.6.8
8.6.8.1
8.6.8.2
8.6.8.3
8.6.8.4
8.6.8.5
8.6.8.6
8.6.8.7
8.6.8.8
8.6.8.9
8.6.8.10
8.6.8.11
8.6.8.12
8.6.8.13

9

10
10.1
10.2
10.3

© EULYNX Partners

Initial pseudostate and final state
Choice pseudostate

Fork pseudostate

Join pseudostate

Simple state

Transition

Event

Change event

Time event

Internal broadcast event

Signal event

Effect

Event-driven responses using signals
Responses in form of continuous flows
Call behaviour

Composite state

Sequential state

Concurrent state

Decomposition of states using state machine diagrams

Transition firing order in nested state hierarchies

Interaction between state machines
Bindings (see chapter 8.2.1)
Action language
Logical operators
Data types
Declaring variables
Reading the value of a port
Setting the value of a port
Calling an operation
Assigning values to variables
Conditional execution of code
While loops
Case selection
Return statement
Comments

Example program written in ASAL

References

Appendix A - Reference Tool Chain

Windchill Modeler
IBM Rational DOORS
Windchill Integration for IBM Rational DOORS

Table of Contents
101
101
101
101
101
102
103
104
104
105
106
107
107
108
108
108
109
110
111
112
113
113
113
113
114
114
115
115
115
115
115
116
116
116
117
117

117

118
119
119
119

iv

Modelling Standard Table of Contents

10.4 Windchill Requirements Connector 119
10.5 Windchill Modeler SySim 119
10.6 MS Visual Studio 120
10.7 Windchill Modeler Reviewer 120

© EULYNX Partners %

Modelling Standard

ID

Type

Requirements

Eu.ModSt.1

Head

1 Miscellaneous

Eu.ModSt.2

Head

1.1 Release information

Eu.ModSt.3

Info

[Eu.Doc.30]

Modelling Standard
CENELEC Phase: 4-5
Version: 4.1 (0.A)
EULYNX Baseline Set: 4
Approval date: ---

Eu.ModSt. 1177

Info

Version history

Eu.ModSt. 1157

Info

version number: 3.0 (0.A)
date: 10.12.2018

author: Randolf Berglehner
review: CCB

changes: EUMT-49, EUMT-50

Eu.ModSt.1984

Info

version number: 3.0 (1.A)

date: 29.10.2019

author: Randolf Berglehner

review: ---

changes: minor modifications to be reviewed by CCB.

Eu.ModSt.1986

Info

version number: 3.0 (2.A)
date: 03.12.2019

author: Randolf Berglehner
review: CCB

changes: EUMT-59

Eu.ModSt.7841

Info

version number: 3.1 (0.A)

date: 28.03.2022

author: Randolf Berglehner

review: M&T

changes: Complete revision due to further methodological development.

Eu.ModSt.7856

Info

version number: 3.1 (1.A)

date: 28.03.2022

author: Randolf Berglehner

review: Nico Huurman

changes: Correction of formal errors

Eu.ModSt.7897

Info

version number: 3.1 (2.A)

date: 12.04.2022

author: Randolf Berglehner

review: ---

changes: Synchronisation of the content of Eu.Doc.30 and Eu.Doc.29 - Baseline for CCB review BL4R1.

Eu.ModSt.7908

Info

version number: 4.0 (0.A)

date: 02.05.2022

author: Randolf Berglehner

review: CCB

changes: CCB comments incorporated. Baseline approved by CCB.

Eu.ModSt.7932

Info

version number: 4.1 (0.A)

date: 08.12.2023

author: Randolf Berglehner

review: M&T

changes: EUMT-61, EUMT-62, EUMT-63, EUMT-64, EUMT-65, EUMT-66, EUMT-70, EUMT-71, EUMT-75, EUMT-76, EUMT-78, EUMT-79, EUP-497

© EULYNX Partners

Page 1 of 120

Modelling Standard

ID Type Requirements

Eu.ModSt.4 Head | 1.2 Impressum

Eu.ModSt.5 Info Publisher:
EULYNX Initiative

A full list of the EULYNX Partners can be found on www.eulynx.eu/index.php/members

Eu.ModSt.7 Info Responsible for this document:
EULYNX Project Management Office

www.eulynx.eu

Eu.ModSt.1178 | Info Copyright EULYNX Partners
All information included or disclosed in this document is licensed under the European Union Public Licence EUPL, Version 1.1.

Eu.ModSt.6 Head | 1.3 Purpose

Eu.ModSt.49 Head | 1.3.1 About this Modelling Standard

Eu.ModSt.50 Info The goal of this Modelling Standard is to provide a mandatory guideline for Model-based Systems Engineering (MBSE) of digital Command Control and Signalling systems (CCS) in the railway domain.

Eu.ModSt.52 Info According to MBSE introduced in this Modelling Standard the structure and functionality of digital CCS are specified using the engineering-oriented and standardised Systems Modeling Language (SysML) [1].

Eu.ModSt.1463 | Info Furthermore, the Systems Modelling Language is embedded in a specification framework compliant to the European standards on functional safety (EN 50126, EN 50128, EN 50129, EN 50159).

Eu.ModSt.53 Info Based on the notion of a seamless development approach that heavily facilitates reuse, automation and innovation, an advanced and comprehensive modelling theory is used with the MBSE Specification Framework (MBSE
SF) as core component. It enables a stepwise specification of digital CCS in a configurable, extendable, modular and reusable way.

Eu.ModSt.1975 | Info The MBSE Specification Framework (MBSE SF) contains, among others, an Architecture Model MBSE (AM MBSE) that facilitates the description of a digital CCS from different viewpoints capturing different
stakeholder concerns and with varying degrees of granularity (different abstraction levels).

Eu.ModSt.54 Info It should be noted that this document is a ,living document®, i.e. it will evolve over time. The present version reflects the procedures that are currently being applied and evaluated in the EULYNX Initiative. Future versions
of the Modelling Standard will contain the topics left out in this version.

Eu.ModSt.864 | Info Correspondingly, as this standard is based on standard SysML, some example diagrams and pictures obtained from diverse sources, which show enhanced graphical features such as colours, shadows, 3D or embedded
pictures, shall not be considered normative.

Eu.ModSt.7959 | Info It should also be noted that the inserted diagrams are only to be understood as examples for methodological explanation and, although there are similarities to the content of current specifications, are not intended to
convey any specification-specific content. The relevant specifications should be consulted for specification-specific content.

Eu.ModSt.55 Head | 1.3.2 Audience

Eu.ModSt.56 Info The audience targeted by this Modelling Standard comprises engineers being familiar with CCS, modellers creating specification models in this domain, and parties interested in understanding the MBSE approach followed in
EULYNX. Fundamental knowledge about requirements- and systems engineering methodology and the modelling language SysML, as, for example introduced in [24], is recommended.

Eu.ModSt.8 Head | 1.4 Terms and abbreviations

Eu.ModSt.9 Info The terms and abbreviations are listed in the EULYNX Glossary [Eu.Doc.9].

Eu.ModSt.853 | Info The present version of the Modelling Standard contains the abbreviations listed in Chapter 2 of it.

Eu.ModSt.849 | Head | 1.5 Related documents

Eu.ModSt.850 | Info The current versions of documents related to this document are listed in the EULYNX Documentation plan [Eu.Doc.11].

Eu.ModSt.851 | Info ¢ System Engineering Process [Eu.Doc.27]

Eu.ModSt.852 | Info * Interpretation rules for model-based requirements [Eu.Doc.29]

Eu.ModSt.10 Head | 2 Abbreviations

Eu.ModSt.1262 | Info Abbr. Abbreviation

© EULYNX Partners Page 2 of 120

Modelling Standard

ID Type Requirements
Eu.ModSt.11 Info ASAL Atego Structured Action Language
Eu.ModSt.1254 | Info AL Abstraction level
Eu.ModSt.865 | Info AM Architecture Model
Eu.ModSt. 12 Info bdd Block definition diagram (SysML)
Eu.ModSt. 13 Info C Command & Control layer
Eu.ModSt.1974 | Info CCs Command Control and Signalling
Eu.ModSt.14 Info Cd Command
Eu.ModSt.7848 | Info CDb Connection Domain
Eu.ModSt. 15 Info CENELEC European standards on functional safety (EN 50126, EN 50128, EN 50129, EN 50159)
Eu.ModSt. 16 Info Con Configuration data
Eu.ModSt.1159 | Info DiaNo Diagram number
Eu.ModSt.866 | Info D Data
Eu.ModSt. 17 Info D-Port Data port
Eu.ModSt.7879 | Info ESE Environmental Structural Entity
Eu.ModSt.868 | Info EIL Electronic interlocking
Eu.ModSt.20 Info F Field layer
Eu.ModSt.7874 | Info FA Functional Architecture
Eu.ModSt.7875 | Info FE Functional Entity
Eu.ModSt.22 Info Gen Generic
Eu.ModSt.23 Info ibd Internal Block Diagram (SysML)
Eu.ModSt.1976 | Info ILS Interlocking System
Eu.ModSt.1522 | Info IM Infrastructure Manager
Eu.ModSt.869 | Info ISE Infrastructure Elements
Eu.ModSt.24 Info LA Logical Architecture
Eu.ModSt.27 Info LS Light Signal
Eu.ModSt.7876 | Info LSE Logical Structural Entity
Eu.ModSt.28 Info MBSE Model-based systems engineering
Eu.ModSt.30 Info MBSE SF MBSE Specification Framework
Eu.ModSt.31 Info MBSEP MBSE Process
Eu.ModSt.32 Info Msg Message
Eu.ModSt. 1299 | Info OE Operational Entity
Eu.ModSt.1521 | Info ON Operational Needs
Eu.ModSt.1266 | Info PDI Process Data Interface

© EULYNX Partners

Page 3 of 120

Modelling Standard

ID Type Requirements

Eu.ModSt.1265 | Info PTC Parametric Technology Corporation

Eu.ModSt.870 | Info RA Risk Analysis and Evaluation

Eu.ModSt.34 Info RAMS Reliability, Availability, Maintainability, and Safety

Eu.ModSt.1977 | Info RCA Reference CCS Architecture

Eu.ModSt.36 Info S Safety layer

Eu.ModSt.38 Info SCI Standard communication interface

Eu.ModSt.1450 | Info SCP Safe Communication Protocol

Eu.ModSt.887 | Info SIUS System Interface under Specification

Eu.ModSt.1982 | Info SoS Systems of Systems

Eu.ModSt.7929 | Info SP System Pillar

Eu.ModSt.875 | Info std State diagram (SysML)

Eu.ModSt.1448 | Info stm State machine

Eu.ModSt.37 Info Sys System

Eu.ModSt.873 | Info SysDef System Definition

Eu.ModSt.44 Info SubS Subsystem

Eu.ModSt.874 | Info SuUS System under Specification

Eu.ModSt.41 Info SysML Systems Modeling Language

Eu.ModSt.42 Info SySim System simulation

Eu.ModSt.876 | Info T Trigger

Eu.ModSt.7898 | Info TFA Technical Functional Architecture

Eu.ModSt.7877 | Info TFE Technical Functional Entity

Eu.ModSt.7878 | Info TSE Technical Structural Entity

Eu.ModSt.43 Info T-Port Trigger port

Eu.ModSt.877 | Info ucd UseCase diagram

Eu.ModSt.45 Info UML Unified modeling language

Eu.ModSt.46 Info VAL Validation

Eu.ModSt.47 Info VER Verification

Eu.ModSt.48 Head | 3 Introduction

Eu.ModSt.76 Head | 3.1 Motivation

Eu.ModSt.77 Info Historically, operators of rail infrastructures were supplied with monolithic systems, based on proprietary interfaces. A few years ago, a re-orientation of the means of production of future systems was initiated. This entails
purchasing modular systems. For example, an interlocking system (ILS) comprises an electronic interlocking (EIL), a command control system and field elements such as points, signals, and so forth. The fundamental
concept of this new approach is having these parts supplied separately [12].

Eu.ModSt.1465 | Info The new approach requires the development of standardised interfaces between the subsystems of a digital CCS such as a digital interlocking system. This will enable the different suppliers to supply compatible modules.
This requires high quality specifications, as suppliers will be working with these blueprints and the operators of rail infrastructures will carry out the system integration tasks.

© EULYNX Partners Page 4 of 120

Modelling Standard

ID Type Requirements
Eu.ModSt.78 Info Furthermore, the design of a harmonised railway system with the objective of a broad EU-wide implementation, as striven for in the System Pillar (SP), requires improving specification techniques. Thus, it is an important
issue among infrastructure managers, the railway industry and researchers to find appropriate forms to specify the architectures of complex component systems right up to huge systems of systems (SoS).
Eu.ModSt. 1464 | Info Different forms, like natural languages and graphical representations of system requirements, have been used and raised a number of criticisms. On the other hand, formal methods are considered to be one of the correct
ways to specify and verify system requirements. They have been addressed in the railway domain for a number of years. To apply these formal methods, one needs a strong mathematical background.
Eu.ModSt.1978 | Info Thus, following the goal to create high quality specifications understandable also for people without a strong mathematical background, the popular systems modeling language (SysML) [1] is used as specification language
in the MBSE approach introduced in this Modelling Standard.
Eu.ModSt.79 Info The use of standardised interfaces and highly detailed system specifications creates a need for safety to be part of the specifications. The adoption of MBSE has therefore been part of this transformation, by proving
through modelling and simulation that system specifications meet safety critical requirements.
Eu.ModSt.80 Info Studies of system developments show that the capture of requirements is one of the most decisive and critical steps in system development. There are many problematic aspects connected to the identification and
description of requirements in software-intensive projects. The following three form the most important aspects as mentioned in [4]:
¢ requirements are not completely and accurately identified and understood by the application expert;
¢ requirements are not correctly specified, although completely and accurately identified and understood;
¢ requirements are correctly specified using informal techniques, that are not properly interpreted and conceived by the system designer or the implementer.
All three problems may lead to a considerably more expensive and time consuming system development.
Eu.ModSt.81 Info Based on these observations, an engineering-oriented model-based method for the stepwise specification of digital CCS using the Systems Modeling Language (SysML) [1] has been developed to support different
professionals, especially railway engineers, to specify, validate and verify the corresponding system requirements.
Eu.ModSt.2010 | Info The model-based requirements definition is used to:
* enable a continuous CENELEC-compatible top-down specification of a (sub)system (refinement of the requirements across different abstraction levels)
* describe the functional requirements of a (sub)system or an interface operationally and therefore suitable for simulation, i.e. testable in a uniform format
e support achieving consistency, non-ambiguity and completeness of the requirements as far as possible
« allow for the testing by simulation of the functional requirements of a (sub)system or an interface already during the specification phase (moving error detection to the specification phase)
¢ support the generation of (sub)system or interface test cases from the requirements specification
Eu.ModSt.2012 | Info The system requirements are described in a consistent, nhon-ambiguous and compact form using the standardised semiformal language SysML. It should be noted that the SysML model elements and their interaction are to
be understood as a means of describing the system requirements and not as implementation specifications. They are to be implemented with regard to their semantics.
Eu.ModSt.7899 | Info The type of representation and the underlying methodology sometimes differs from common text-based specifications. However, the requirements can be further processed into functional specifications and products in
accordance with the tested processes.
Eu.ModSt.65 Head | 3.2 Structure of the Modelling Standard
Eu.ModSt.66 Info The Modelling Standard is structured as depicted in Figure 6/.

© EULYNX Partners

Page 5 of 120

Modelling Standard

ID

Type

Requirements

Eu.ModSt.67

Info

Figure 67 Structure of the Modelling Standard

Chapter 1

Miscellaneous Chapter 5

Modelling Language

Chapter 2 /

Abbreviations v Chapter 6

Chapter 3 ;o Tools
Introduction S
;o Chapter 7

User Requirements

Appendix A
Reference Tool Chain

Chapter 4
MBSE Specification Framework el

e Chapter 8

Chapter 9 Architecture Model MBSE

References

Eu.ModSt.68

Info

The main contents of the Modelling Standard are covered in Chapters 3 - 10.

Eu.ModSt.69

Info

In Chapter 3, an introduction to the Modelling Standard is given.

Eu.ModsSt.71

Info

In Chapter 4, an introduction to the structure of the MBSE Specification Framework (MBSE SF) is given. The MBSE SF is the basis for the development of a stepwise model-based specification of all the design decisions that
are made during the different needed engineering activities.

Eu.ModSt.72

Info

In Chapter 5, the modelling language being used is introduced.

Eu.ModSt.7928

Info

In Chapter 6, the requirements for supporting tools necessary to implement the EULYNX MBSE process are outlined. To complement this, the tool chain currently used in EULYNX is described in Appendix A. 1t fully
supports the EULYNX MBSE process and serves as a reference for the use of alternative tool chains.

Eu.ModSt.73

Info

In Chapter 7, the area ,User Requirements" of the MBSE SF is described.

Eu.ModSt.74

Info

In Chapter 8, the Architecture Model MBSE (AM MBSE) is introduced and the constituent model views are described. The characteristics of the EULYNX subsystems are highlighted and the principles of model-based
requirements definition are explained. Furthermore, the MBSE process is presented in a simplified way. The main part of the chapter is dedicated to the description of the model views and the corresponding modelling rules:
8.1 Overview of the EULYNX MBSE methodology

8.1.1 Characteristics of EULYNX subsystems

8.1.2 Principle of model-based definition of requirements

8.1.3 Overview introduction to the EULYNX MBSE Process

8.2 Model views - General modelling rules

8.2.1 Binding of requirements

8.2.2 Modelling Pattern for interlocking systems

8.2.3 Introduction to basic structural model elements

8.2.4 Interface centric specification

8.3 Model views used to specify EULYNX subsystems

8.4 Model views used to specify EULYNX interfaces

8.5 Model views "Functional Entity" and "Technical Functional Entity" - Description

8.6 Model views "Functional Entity" and "Technical Functional Entity" - Modelling rules

Eu.ModSt.70

Info

In Chapter 9, the references are listed.

Eu.ModSt.7933

Info

Appendix A (chapter 10) describes a reference tool chain that enables the implementation of the EULYNX process.

Eu.ModSt.236

Head

4 MBSE Specification Framework

© EULYNX Partners

Page 6 of 120

Modelling Standard

ID Type Requirements

Eu.ModSt. 1492 | Info Today's and, even more so, the future development of CCS systems in the railway domain faces a variety of challenges. Key success factors to meeting these challanges are suitable architecture description concepts for
abstraction and structure CCS architectures at different levels of granularity. The result of these concepts is a seamless development approach that heavily facilitates reuse and automation. As stated in [25], a basic
requirement for such a seamless approach is a clear notion of a system that is formalised by a comprehensive modelling theory. According to this modelling theory, a modelling framework has to provide appropriate
models and description techniques for modelling the different aspects and artefacts of system development.

Eu.ModSt.237 | Info Inspired by [25] and [26], this Modelling Standard introduces the MBSE Specification Framework (MBSE SF) in order to meet those aforementioned challenges. Focusing on system requirements specification and interface
requirements specification tasks to be carried out at the infrastructure manager side, it facilitates the seamless model-based specification of

¢ EULYNX subsystems under Specification (SUS) or

¢ EULYNX adjacent System interfaces and subsystem Interfaces under Specification (SIUS)
as well as the verification and validation of the resulting specification artefacts.

Eu.ModSt.1493 | Info The MBSE SF consists of five areas (see Figure 238), namely
¢ User Requirements,

¢ System Requirements,

* Domain Knowledge,

* MBSE Process and

¢ Modelling Language and Tools.

Eu.ModSt. 1494 | Info Guided by a MBSE process and based on Domain Knowledge, these areas strictly distinguish between the problem domain (User Requirements) and the solution domain (System Requirements).

© EULYNX Partners Page 7 of 120

Modelling Standard

ID

Type

Requirements

Eu.ModSt.238

Info

Figure 238 MBSE Specification Framework

MBSE Specification Framework (MBSE SF)

l:lser System Domain MBSE
Requirements Requirements Knowledge | Process

Architecture Model

specify MBSE (AM MBSE)

Specification model
Modelling Language and Tools

@ Specify the system model based on design decisions derived from
user requirements and elicit new user requirements from it.
@ Refine or decompose the system model (increasing granularity).

© Verify the consistent refinement or decomposition of the system model.

O Vvalidate that stakeholder intentions are reflected completely
and correctly.
© Verify (proof) the fulfillment of user requirements.

® @ Use Domain Knowledge and MBSE Process as basis for
specification, verification and validation tasks.

Eu.ModSt.239

Info

User Requirements

The area "User Requirements" contains the model of the problem domain (problem definition) in the form of user requirements (see Fig. 1484). User requirements allow the different stakeholders to explicitly state what is
expected from the future system. They are the main source for the derivation of design decisions as basis for the creation of the artefacts of an abstract system solution (system model), which itself may be again the source
for the elicitation of new (possibly more granular) user requirements.

Eu.ModSt.245

Info

It has to be verified that the design decisions derived from the user requirements are incorporated in the system model completely and correctly. In other words, it has to be proved that the system model fulfils all defined
user requirements.

Eu.ModSt. 1468

Info

Furthermore, user requirements are among others (e.g. domain knowledge), the source for the validating that the system model reflects the stakeholder intentions completely and correctly.

Eu.ModSt.1486

Info

The area "User Requirements" is described in more detail in chapter 7.

Eu.ModSt.240

Info

System Requirements
The area "System Requirements" contains the model of the solution domain in the form of a system model representing an abstract solution of the system (see Figure 1484). There, the design decisions derived from the
user requirements are documented (specified) traceable with varying degrees of granularity (different abstraction levels) based on the Architecture Model MBSE (AM MBSE). Each abstraction level represents design

decisions about the refined or decomposed implementation of its predecessor (refine dependency).

Eu.ModSt.244

Info

The correct, complete and consistent refinement or decomposition has to be approved in verification steps (verify dependency).

© EULYNX Partners

Page 8 of 120

Modelling Standard

ID Type Requirements

Eu.ModSt.1487 | Info The Architecture Model MBSE is described in more detail in chapter &.

Eu.ModSt.243 | Info Domain Knowledge

The Domain Knowledge model comprises the available knowledge of the problem domain, similar to a project glossary. It hence makes up part of the context of knowledge of the system and can be used to mitigate
misinterpretation, to reduce ambiguity, and to provide a possibility for early verification and validation of the system model [25].

Eu.ModSt.1488 | Info The domain knowledge relevant for EULYNX is defined in Eu.Doc.9 EULYNX Glossary and Eu.Doc.10 EULYNX Domain Knowledge. The documents are available on the EULYNX website [31].

Eu.ModSt.242 Info MBSE Process

The relationships between artifacts of the system model are specified by relations. Such a relation can be expressed by a process activity that defines a general technique for artefact creation and analysis. In the MBSE
Process, multiple of these process activities are combined to a sequence. The output of one process activity can be input of another process activity. Furthermore, one process activity's postcondition might ensure that
another process activity's precondition is met.

Eu.ModSt.1489 | Info The EULYNX MBSE process is described in principle in chapter 8.1. A detailed description of the process steps will be given in a separate document in the future. The EULYNX System Engineering process is currently
documented in Eu.Doc.27 and the procedure for verification and validation of the specification models in the EULYNX verification and validation plan (Eu.Doc.31). The documents are available on the EULYNX website [31].

Eu.ModSt. 1467 | Info Modelling Language and Tools
The suggested modelling language and the requirements for supporting tools necessary to implement the EULYNX MBSE process. are introduced in chapter 5and chapter 6 respectively.

Eu.ModSt.1484 | Info
Figure 1484 Problem definition and abstract solution in the MBSE SF

Problem and solution

Abstract
solution

What the
system does

Specific
solution

How the syste
is constructed

ABSE Specification Framework (MBSE SF)

Domain MBSE
Knowledge | Process

Specification model
Modelling Language and Tools

© EULYNX Partners Page 9 of 120

Modelling Standard

ID

Type

Requirements

Eu.ModSt.246

Head

5 Modelling Language

Eu.ModSt.247

Head

5.1 Systems Modeling Language (SysML)

Eu.ModSt.248

Info

The Systems Modeling Language [1] is used with the objective to document requirements and to specify artefacts in a standardised, correct, complete and consistent way within the framework of the MBSE specification
structure, as outlined above.

Eu.ModSt.249

Info

SysML is a standardised modeling language dedicated to systems engineering applications. It is a UML profile that not only reuses a subset of UML 2.5 [2], but also provides additional extensions to better satisfy Systems
Engineering's specific needs. It is intended to help to specify and design complex systems and their subsystems and enable their analysis, verification and validation. These systems may consist of heterogeneous
components such as hardware, software, information, processes, personal and facilities [1].

Eu.ModSt.250

Info

Nine SysML diagrams (see Fig.251) define a concrete syntax that describes how SysML concepts are visualized graphically or textually. Each diagram represents a specific view of the model of the SUS or SIUS. In the SysML
specification [1], this notation is described in tables that show the mapping of the language concepts into graphical symbols on diagrams. Diagrams used in this Modelling Standard will be outlined in the following chapters.
For a detailed description, however, the SysML specification [1] shall be referred to.

Eu.ModSt.251

Info

Figure 251 SysML diagram taxonomy [1]

CLD SysML Diagram T-,.'pesJ

SysML Diagrams I

Structural Diagrams . Requirement Diagram . | Behavioral Diagrams I

| Package Diagram ' Use Case Diagram I
Block Definition Diagram I State Machine Diagram I
Internal Block Diagram I Activity Diagram I

Parametric Diagram I Sequenca DIASEE I

Eu.ModSt.252

Head

5.2 Action Language

Eu.ModSt.253

Info

The specification approach described in this modeling standard follows the objective of creating executable specification models. In order to specify the necessary executable behaviours in SysML, such as block operations
or transition effects on state machines the Atego Structured Action Language (ASAL) is used.

Eu.ModSt.254

Info

ASAL is an UML Action Language suitable for specifying executable algorithms in a target language independent way. It is used to specify the Event Action Blocks in SysML models that use state machine diagrams
describing the stimulus-response behaviour of a SUS or a SIUS.

© EULYNX Partners

Page 10 of 120

Modelling Standard

ID Type Requirements

Eu.ModSt.255 | Info Furthermore, ASAL is used to describe the transformational aspects of a SUS or SIUS (data flow). The logical structure of the input and output data, and the algorithm that computes the transformation are specified in the
body of corresponding block operations.

Eu.ModSt.256 | Info A description of ASAL is provided in chapter 8.6.8 (see also [13]).

Eu.ModSt.7697 | Head | 5,2.1 The role of data types

Eu.ModSt.161 | Info According to the specification approach described in this Modelling Standard, a data type is a classification based on identification of one of the various types of data (e.g. the type of a message sent along a SUS interface).
The data type such as Boolean, Integer or String restrict the possible values corresponding to that type, the meaning of data, the way values of that type can be stored and how a state machine receiving such data reacts.

Eu.ModSt.162 | Info A data type may be refined in the tradition of data refinement [4]. We may, for example, type a message in the specification model as string, and after implementation level design of the SUS or SIUS instead of sending
strings, bits are sent. Thus, a data type used in the specification model may be refined and an implementation-oriented data type may be used by the supplier of the SUS or SIUS. However, it must be ensured that the new
data type complies with its predecessor (verification of the refinement).

Eu.ModSt.301 Head 6 Tools

Eu.ModSt.7912 | Info The EULYNX MBSE process shall be supported by a toolchain that enables the creation of SysML specification models, their static checking for completeness, correctness and consistency and the simulation-based validation
of the models. It should be noted here that the creation of the executable models (virtual prototypes) can take place directly, i.e. without the need for the intermediate step of a model transformation.

Eu.ModSt.7913 | Info Furthermore, the application of formal methods must be made possible (e.g. formal proof of safety properties, model checking, etc.).

Eu.ModSt.7914 | Info The modelling tool shall provide a link to a requirements management tool that allows the representation of specification model elements in the form of atomic requirements. These must be able to be transformed into the
standardised Requirements Interchange Format (ReqIF) and exchanged with suppliers.

Eu.ModSt.7915 | Info The tool chain currently used in EULYNX is shown serving as a reference for the use of alternative tool chains in Appendix A - Reference tool chain.

Eu.ModSt.312 Head 7 User Requirements

Eu.ModSt.313 | Head | 7.1 Overview

Eu.ModSt.107 | Info As many standards such as the EN 50126 [17] do not distinguish between a user requirements and system requirements definition phase, this has to be clarified in order to meet the objective of this Modelling Standard.
The MBSE Specification Framework introduced in chapter 4 takes account of this providing a structure to explicitly define user requirements separated from system requirements.

Eu.ModSt.314 | Info As already stated, user requirements are depicted in the area ,User Requirements" of the MBSE SF and describe the problem domain (problem definition). They allow the stakeholders (users) to explicitly state what is
expected from the SUS/SIUS. They should define the results wanted by the stakeholders i.e. what the stakeholders want to be able to do with the SUS/SIUS and the expected quality. However, they should not make any
comments or statements about how the SUS/SIUS is to be created or provided.

Eu.ModSt.108 | Info User requirements define the results that the users want, irrespective of any functional breakdown (see Figure 112). They must be separate from system requirements and must be defined first.

Eu.ModSt.110 | Info The system requirements must solve the problem of the user, i.e. they must satisfy the user requirements. This has to be approved by means of validation.

Eu.ModSt.112 | Info
Figure 112 Differentiating user and system requirements

User requirements System requirements
= A description of the problem
= Results that operational users want from » An abstract representation of the solution
the system » What the system does
» Do not constrain the solution - * Do not unnecessarily constrain the design
: validate : :
= Quality of those results * How well it does it
= Owned by users or their representatives * Owned by systems engineers
[“The user shall be able to ...”] [“The system shall do...”
Eu.ModSt.1485 | Info The task of defining user requirements encompasses the whole MBSE Process. They are the main source for the creation of the model of an abstract system solution which represents the system requirements.

© EULYNX Partners

Page 11 of 120

Modelling Standard

ID Type Requirements

Eu.ModSt.316 | Info User requirements should be stated by (or on behalf of) the stakeholders for whom the SUS/SIUS is being developed. Even if the stakeholders do not actually write the user requirements, they should review and when they
are happy "endorse" them, and hence take an "ownership" of them.

Eu.ModSt. 1473 | Info User requirements may be divided into different classes such as operational requirements, architectural requirements, technical constraints, quality requirements, safety requirements and so on. Safety requirements are an
important class of user requirements and thus shortly introduced in chapter 7.2. As the main focus of this Modelling Standard is not the elicitation of user requirements, the other different types are not further described.

Eu.ModSt.1474 | Head | 7.2 Safety requirements

Eu.ModSt.1475 | Info Safety requirements, also referred to as safety goals, state safety invariants, i.e. conditions that could lead to hazardous situations if they are not met. They can be split into the following two categories [9]:

- Safety invariants: What may not happen under any circumstances,
- Safety overrides: Who may do what under which circumstances.

Eu.ModSt. 1476 | Info The origin or approach for defining safety requirements can vary. In this section, characteristics of three different methods [26] to create safety requirements are outlined.

Eu.ModSt.1478 | Info Ad-hoc elicitation
The first it is referred to as ad-hoc. Such requirements are specific to a particular system and are based on the design principles for that system. One such requirement for a relay-based interlocking may state that “Front
coil of relay L may have current only if relay Ljg has dropped”.

Eu.ModSt.1481 | Info Regulations-based elicitation
The second is referred to as regulations-based. Requirements are based on safety standards, e.g. based on formalising requirements in applicable rules and regulations. One such requirement for an interlocking may
state that “a main signal may clear only if there is an established flank protection”, together with appropriate definitions of what "clear" means and what the requirements on flank protection means.

Eu.ModSt.1480 | Info Hazard-based elicitation
The third is referred to as hazard-based. Requirements are based on making an analysis (hazard analysis) of the different types of possible hazards (e.g. frontal collision of trains, derailment and so on) and for each
possible hazard, require that it is impossible. Essentially, the purpose of hazard analyses is to identify operational conditions of the SUS's functionality that could lead to harm. The main outputs of such an analysis are
hazards and safety goals (i.e. safety requirements).

Eu.ModSt. 1482 | Info Safety requirements should be documented separately from other user requirements and incorporated into the systems requirements artefacts. The complete and correct incorporation of the safety requirements has to be
assured using verification methods such as simulation-based falsification methods or formal verification methods [25].

Eu.ModSt. 1490 | Info Simulation-based falsification methods can work directly on simulation models such as executable SysML state machines. In general, given a safety requirement in some form of logic, these methods leverage
mathematical methods, trying to falsify the requirement. This means that the algorithms are geared towards identifying the "worst possible" simulation run with respect to the given requirement. If the method succeeds in
producing a run which violates the requirement, it is falsified and the counterexample can be used to refine either the requirement or the simulation model. If it does not, no formal guarantees about the fulfillment of the
requirement can be made.

Eu.ModSt.1491 | Info In contrast, formal verification methods aim to provide formal proof of the correctness of the requirement for the given model of the SUS/SIUS. Because this proof cannot be provided by simulation alone, a strictly
formal model is required.

Eu.ModSt.317 | Head | 7.3 Formulation of user requirements

Eu.ModSt.318 | Info This Modelling Standard does not have the intention to impose obligations how user requirements have to be formulated, but suggests a formulation as textual requirements according to the SysML specification [1].

Eu.ModSt.319 | Info SysML introduces the requirement diagram which provides the means to depict requirements and to relate them to other specification, design or verification models. The requirements can be represented in graphical,
tabular, or tree structure formats.

Eu.ModSt.320 Info The strength and usefulness of a requirement diagram consists in the fact that it allows to easily understand the relations between the requirements and other model elements. The semantics of these relationships and
other diagram elements are explained in [1].

Eu.ModSt.321 | Info A requirement can be decomposed into sub-requirements in order to organize multiple requirements as a tree of compound requirements. Moreover, a requirement can be related to other requirements as well as to other
elements, such as analysis, implementation, and testing elements (see Figure 323).

Eu.ModSt.322 | Info Therefore, a requirement can be generated or extracted from another requirement by using the derive relationship. Furthermore, requirements can be fulfilled by certain model elements using the satisfy relationship. The
verify relationship is used to verify a requirement by applying different test cases.

Eu.ModSt.1479 | Info User requirements (especially safety requirements) should be verifiable, so that it is possible to distinguish a system model satisfying the user requirements from one that does not do. Typical reasons for user requirements

not being verifiable include:

- The user requirement is incomplete.

- The user requirement is poorly written.

- The user requirement is not described at the level it will be verified.

© EULYNX Partners

Page 12 of 120

Modelling Standard

ID Type Requirements
Eu.ModSt.323 | Info
Figure 323 Requirement diagram example [1]
redq aGckage | HaLU'Y KReguirements [A lerati wogquirement Kl ent and v enficaton
"l L Nl
Acceleration
HS5UVLU selases:
:Accelerate
s
Power
Yiax -:u. ..'--I.; !I ation
PowerSubsystem
Eu.ModSt.332 | Head | 8 Architecture Model MBSE
Eu.ModSt.330 | Info The design decisions derived from the user requirements are documented traceable in the area "Architecture Model MBSE" of the SF MBSE in the form of a model of the abstract solution of a SUS or a SIUS.
Eu.ModSt.335 | Info Focusing on specification tasks to be carried out at infrastructure manager (IM) side, the Architecture Model MBSE (see Figure 340) facilitates the description of a SUS or a SIUS from different viewpoints capturing different
stakeholder concerns and with varying degrees of granularity (different abstraction levels).
Eu.ModSt.1516 | Info Viewpoint
A viewpoint is a specification of the conventions for constructing and using a view. Viewpoints comprise patterns or templates from which to develop individual views by establishing the purpose and audience for a view and
the techniques for its creation and analysis (based on [29]).
Eu.ModSt.342 | Info Abstraction level
An abstraction level defines a specific level of abstraction and granularity at which the SUS/SIUS is examined. The level of granularity of the respective abstraction level is in turn determined by a structural characteristic
that stems from the layer above. Initially we consider the SUS/SIUS as a whole [25]. In other words, an abstraction level describes the whole of a SUS/SIUS under a certain degree of abstraction, i.e. it represents the
amount of complexity by which a SUS/SIUS is viewed. The higher the level, the less detail. Any abstraction level contains several appropriate views.
Eu.ModSt.1561 | Info To change the degree of granularity for a given view to a higher degree, a low degree view is refined into a number of more detailed SUS/SIUS views following the principle of divide and conquer. This step can basically be
performed from any viewpoint.
Eu.ModSt.357 | Info Refinement
Refinement refers to the process of detailing an analysis or design element while preserving its semantics [25]. The degree of abstraction decreases from top to bottom, i.e. the lower the degree of abstraction the higher
the degree of refinement of corresponding views.
Eu.ModSt.358 | Info The EULYNX MBSE methodology is based on two basic refinement relations, namely, behavioural and interface refinement. These relations are described as follows [4].
Eu.ModSt.360 | Info Behavioural refinement
Behavioural refinement relates to specifications of the same syntactic interface. The refined (more precise) specification may impose further functional and non-functional requirements in addition to those imposed by the
given (more abstract) specification.
Eu.ModSt.362 | Info Interface refinement
Interface refinement relates to specifications of different syntactic interfaces. The refined specification is a ,behavioural refinement" of the given specification with respect to a translation of its input/output histories. For
example, interface refinement allows to replace a message by several messages, and vice versa or instead of transmitting natural numbers, bits may be sent (data refinement).
Eu.ModSt. 1520 | Info Decomposition
In contrast to refinement, decomposition denotes the partitioning of an analysis element or design element, or a logical/technical component into parts [25].
Eu.ModSt.336 | Info View
A view is a representation of a whole SUS/SIUS from the perspective of a related set of concerns (based on [29]. In other words, a SUS/SIUS description from a specific viewpoint and with a specific degree of granularity is
called a view [25]. Within the scope of this Modelling Standard, a view is synonymously referred to as "view", "model view" or "system view".

© EULYNX Partners

Page 13 of 120

Modelling Standard

ID Type Requirements

Eu.ModSt.1336 | Info Engineering path
As illustrated in Figure 340the development of views for a SUS or SIUS with a specific degree of granularity is summarised in an engineering path.

Eu.ModSt.334 | Info The AM MBSE facilitates the seamless, model based specification of digital CCS in the railway domain with three core IM-related viewpoints namely

¢ Functional Viewpoint,
¢ Logical Viewpoint and
¢ Technical Viewpoint.

Eu.ModSt.331 Info The viewpoints describe a SUS or a SIUS with respect to different concerns. However, these descriptions may vary in their degree of granularity. For complex SUS/SIUS in particular, it is reasonable to start with rather high-
level descriptions. Once these high-level descriptions have been created, these views are typically refined and detailed step by step. Therefore, the AM MBSE supports views with different degrees of granularity i.e. views at
different abstraction levels.

Eu.ModSt.333 | Info Following EN 50126 [17] the AM MBSE consists of three core IM-related abstraction levels (AL) namely

AL1: Subsystem/Interface Definition,
AL2: Subsystem/Interface Requirements and
AL3: Apportionment of Subsystem/Interface Requirements.
Eu.ModSt.3561 | Info The AM MBSE can also be applied to specify an overall system, which is not the case in EULYNX at the moment. In this case, the abstraction levels are named as follows:
AL1: System Definition,
AL2: System Requirements and
AL3: Apportionment of System Requirements.

Eu.ModSt. 1526 | Info Each of the IM-related core AL may again be decomposed in further AL such as AL1.1, AL1.2 and so on as appropriate. Any AL represents design decisions about the refined or decomposed implementation of its
predecessor and the specification of the outcome of this decisions by means of appropriate views.

Eu.ModSt.1525 | Info Crosscutting system properties (CSP)

One of the principles of the AM MBSE is the continuous engineering of crosscutting system properties. This principle aims at establishing the ability to consider crosscutting properties of the SUS/SIUS. Typical crosscutting
properties are RAMS [17], security and real-time properties of the SUS/SIUS: they must be considered in any engineering activity and the corresponding artefacts [25].

Eu.ModSt.337 | Info Safety, for example, typically defined as freedom from unacceptable risk (of harm), affects almost all process steps in a development lifecycle. For this reason, safety is not represented in a single viewpoint but as a quality
aspect of the AM MBSE that has a crosscutting influence and is integrated into several viewpoints.

Eu.ModSt.1242 | Info The growing complexity of safety-critical railway systems is leading to increased complexity in safety analysis models. It is therefore not appropriate to develop functionality and consider safety in separate tasks. Safety

aspects have to be integrated as tightly as possible into the development process and its models [25].

© EULYNX Partners

Page 14 of 120

Modelling Standard

ID Type Requirements
Eu.ModSt.340 | Info
Figure 340 Architecture Model MBSE
Architecture Model MBSE (AM MBSE)
Functional Viewpoint Logical Viewpoint | Technical Viewpoint |CSP
AL1 ® | 5
- =
o
- - A
a2| % ~ 1 Ml 5z
. b = 1 a =
- o LS TSI - ppes e
B B R 2]
- f] i E
AL3
System/Model views -
p- CNgineering paitn
Abstraction Levels (AL):
ALl: Subsystem!lnteﬁace D'Eﬁnition BOEOE R R t'il‘ll'll‘% EN 50126 Phase 2
AL2: Subsystem/Interface Requirementsccceevvvviienvnsninnnn= EN 50126 Phase 4
AL3: Apportionment of Subsystem/Interface Requirements> EN 50126 Phase 5
CSP: Crosscutting Subsystem/Interface Properties
Eu.Modst.879 | Head | 8.1 Overview of the EULYNX MBSE methodology
Eu.ModSt.2110 | Info The EULYNX initiative is aiming at specifying EULYNX subsystems and standardising their interfaces (SCI, SMI, SDI) and the interfaces between adjacent systems.
Eu.ModSt.1663 | Info This chapter provides an overview of the used MBSE methodology. The EULYNX MBSE methodology assumes that a definition of the EULYNX architecture is known. Thus, it is currently not designed to describe system
architectures but black-box specification models of EULYNX subsystems, their standardised interfaces and standardised interfaces between adjacent systems.
Eu.ModSt.7012 | Head | 8.1.1 Characteristics of EULYNX subsystems
Eu.ModSt.7014 | Info Command control and signalling (CCS) systems such as EULYNX subsystems are reactive control systems [32] and most of them safety-critical [11]. They are characterized by the constant interaction and synchronisation
between the system and its environment.
Eu.ModsSt.88 Info The terms "system" and "reactive system" shall be explained first.
Eu.ModSt.7702 | Head | 8.1.1.1 System
Eu.ModSt.84 Info A system is a technical or a sociological structure consisting of a group of entities combined to form a whole that can work, function, or move interdependently and harmoniously. A system may consist of various system

elements called subsystems, that can be understood as systems on their own. Systems are thus hierarchically divided into subsystems [4]. Since the single system is, in turn, a part of a larger system, one may speak of an
embedded system [5].

© EULYNX Partners

Page 15 of 120

Modelling Standard

ID Type Requirements
Eu.ModSt.86 Info EULYNX follows the objective of structuring the EULYNX overall CCS system hierarchically into subsystems in a way, that the resulting subsystems, referred to as modules, can be supplied by different suppliers and then
integrated independent of a particular vendor [12]. As far as the specification of those modules, such as a Subsystem Light Signal, a Subsystem Point, a Subsystem LX and so on is concerned, they are fitted with
standardised interfaces and seen as black boxes without any further decomposition.
Eu.ModSt.7059 | Head | 8.1.1.2 Reactive system
Eu.ModSt. 1496 | Info A reactive system is a system that, when switched on, is able to create desired effects in its environment by enabling, enforcing, or preventing events in the environment.
Eu.ModSt.89 Info Following the deterministic paradigm which is a key requirement for a safety-critical railway system, in contrast to non-deterministic systems, the same sequence of system inputs always produces the same sequence of
system outputs.
Eu.ModSt. 1497 | Info Safety is a major quality of safety-critical railway systems that must be considered in any activity during engineering. Safety can be characterized as the extent to which the SUS will not have effects on its environment that
result in harm to people, significant monetary losses, or any other negative impacts to its environment [25].
Eu.ModSt.90 Info Reactive systems have a number of characteristics [8]:
¢ The system is in continuous interaction with its environment.
¢ The process by which the reactive system interacts with its environment is usually nonterminating. If a reactive system terminates during its availability time, this is usually considered a failure.
¢ In its interaction with the environment, the system will respond to external stimuli as and when they occur. The system must therefore be able to respond to interrupts, even if it is doing something else.
¢ The response of a reactive system depends on its current state and the external event that it responds to. The response may leave the system in a different state than it was before.
¢ The response consists of enabling, enforcing, or preventing interaction with its environment.
¢ The behaviour of a reactive system often consists of a number of interacting processes that operate in parallel.
¢ Often a reactive system must operate in real time and under stringent time requirements.
Eu.ModSt.91 Info Although reactive systems may provide manifold functionality, they all engage in stimulus-response behaviour. Thus, for the specification of a reactive system appropriate techniques are needed for specifying stimulus-
response behaviour.
Eu.ModSt. 1499 | Info For the specification of the stimulus-response behaviour of a safety-critical railway system such as an interlocking system that may be described by discret states, finite state machines such as SysML state machines may be
used.
Eu.ModSt. 1498 | Info Similar to the characteristics of reactive systems are the characteristics of interactive systems. While for reactive systems the stimulus-response behaviour is determined by the physical-technical environment, the stimulus-
response behaviour of interactive systems is determined by the system.
Eu.ModSt.93 Info Reactive systems or interactive systems can be contrasted with transformational systems [8], which exist to transform an input into an output. A diagnostic expert system, for example, is a transformational system; it may
enter an interactive dialogue to acquire all relevant data about a malfunctioning system, but when all data is provided, the expert system will produce its diagnosis as output and terminates.
Eu.ModSt.7015 | Info Since a EULYNX subsystem also has the characteristic of a control system, this term shall be explained next.
Eu.ModSt.7016 | Head | 8.1.1.3 Control system
Eu.ModSt.7017 | Info To control means to regulate or direct. Hence a control system is an arrangement of physical components connected in such a manner to direct or regulate itself or another system.
Eu.ModSt.7018 | Info If a lamp is switched ON or OFF using a switch, according to the example shown in chapter 8.1.3, the entire system can be called a control system. In short, a control system is in the broadest sense, an interconnection of
physical components to provide the desired function, involving controlling action in it.
Eu.ModSt.7019 | Info For each control system, there is an input and an output. The input is the stimulus, excitation, or reference value applied to a control system to produce, depending on its internal state, a specific response and the output is
the actual response obtained from the control system. The specification of a control system can thus basically be done in stimulus-response form.
Eu.ModSt.7020 | Head | 8.1.1.4 Typical control loop of a EULYNX subsystem
Eu.ModSt.7021 | Info Figure 7022 shows a typical control loop of a CCS system such as a EULYNX subsystem. The "Plant" is the system being controlled such as the point in the environment of the control system consisting of point controller

and point machine (see Figure 7051).

© EULYNX Partners

Page 16 of 120

Modelling Standard

ID Type Requirements

Eu.ModSt.7051 | Info
Figure 7051 Example of a plant

Point Controller
(Subsystem Point)

= , Plant
our-wire %
interface 4 Actuatol Drive rod
[] -,'/"';I:'?fl.l”rr: a o =
[Point l] | _
— | Machine Point blade lock
| ow B— € 1. wmEh
g it '

Position Sensor | 4\
m Sliderod g 30—

|4)

Steering rack
\ J

Point

Eu.ModSt.7023 | Info Most core control system functions can be assigned to one of the four categories listed below:

¢ Control: the purpose of a control function is to transform information about a needed change of the plant’s state into instructions or commands for the state of the actuators. Control functions are where all the
decisions are made.

¢ Actuate: the purpose of an actuate function is to transform instructions or commands into a physical state that has some effect on the plant’s internal state.

¢ Sense: the purpose of a sense function is to transform a physical external state of the plant into information about the plant’s external state.

¢ Observe: the purpose of an observe function is to transform information about the plant’s external state into an observation about the plant’s internal state. Observe functions are where inferences are made about
the state of the plant given incoming data.

Eu.ModSt.7024 | Info Basically, only what can be observed can be controlled. This is not the same as saying that only what can be sensed can be controlled. Sensed data can be used to estimate an internal state that shall be controlled, but an
internal state cannot be directly sensed. Only the external states of the plant can be sensed.

Eu.ModSt.7025 | Info The point state (LEFT, RIGHT or TRANSITION) of a railroad turnout, for example, is an internal state. It can be inferred by sensing the current flow via the point machine position sensor contacts. From these sensed current
flow, we can infer the internal state that is the point state of the turnout.

Eu.ModSt.7026 | Info Figure 7022 shows the flow of information between the functions [(2), (5), (6)] within the control system and between them and an external reference (1) and the “Plant” [(3), (4)] using a railroad turnout as an example.
The information flows (4), (5) and (6) correspond to the “feedback” of a closed loop control system as described in [32]. The information flows are described below:

(1) Required internal state of “Plant”: e.g. required point state “LEFT”,

(2) Required external state of “Plant”: e.g. connected voltage for moving the point machine to the left (four-wire interface),

(3) Actual external input state of plant: e.g. movement of the point machine drive rod to bring the point into the left position,

(4) Actual external output state of plant: e.g. switching position of the point machine position sensor contacts depending on the point machine drive rod position,

(5) Sensed external output state of plant: e.g. current flow via the point machine position sensor contacts (four-wire interface),

(6) Estimated internal state of plant: e.g. estimated point state "RIGHT” or “TRANSITION.

© EULYNX Partners Page 17 of 120

Modelling Standard

ID Type Requirements
Eu.ModSt.7022 | Info
Figure 7022 Typical control loop of a EULYNX subsystem
. = 2) (3)
Plant
(4)

Eu.ModSt.7052 | Head | 8.1.1.5 Interpretation of the concept of "Function”

Eu.ModSt.201 | Info According to the EULYNX MBSE approach, use cases form the basis for the functions to be provided by a SUS at the highest level of abstraction, i.e. at abstraction level AL1 of the AM MBSE. They describe the functionality
of a SUS in terms of how it is used to achieve the goals of its various users (see chapter 8.1.2.2.3). In other words, use cases create desired effects in the SUS environment.

Eu.ModSt.7699 | Info In contrast to a use case, a function is the ability of a SUS to create a desired effect in the system environment. So all use cases of a SUS are functions and each function realises one or more UseCases [8].

Eu.ModSt.7053 | Info At abstraction level AL2 of the AM MBSE, a function is represented by a Functional Entity (FE) or a Technical Functional Entity (TFE). Both encapsulate subsets of functional requirements of EULYNX SUSs or SIUSs in the
form of function modules. They delimit the function modules from their environments and define the inputs and outputs.

Eu.ModSt.7058 | Info While FEs define technology-independent functional requirements derived from corresponding use cases defined on abstraction level AL1, TFEs describe technology-dependent ones.

Eu.ModSt.7056 | Info FEs and TFEs have SysML state machines and SysML block operations to describe behaviour. SysML state machines enable the specification of finite discrete event dynamic behaviour. SysML block operations are used to
perform logical or algebraic transformations. The corresponding algorithms are defined in the operation bodies using the action language ASAL. Block operations are currently used as call operations. This means that they
have a finite execution cycle (they are called, for example during state transitions, executed, and return a value).

Eu.ModSt.7057 | Info The EULYNX specification approach allows the description of functional control system architectures and their governing control loops through the "Functional Architecture" and "Technical Functional Architecture" model
views of AM MBSE. As exemplified in Figure 7055, the functions of a control system are represented by interconnected FEs or TFEs.

Eu.ModSt.7321 | Info Please note: FEs and TFEs are used for the structured description of a SUS or SIUS and are not in themselves architectural specifications for the manufacturer. In other words, a manufacturer does not have to prove that

it implements a particular FE or TFE. Proof is only required for the overall behaviour defined by the interconnected FEs or TFEs in a functional or technical functional architecture.

© EULYNX Partners

Page 18 of 120

Modelling Standard

ID

Type

Requirements

Eu.ModSt.7055

Info

Figure 7055 FE and TFE in a Technical Functional Architecture

Technical Functional Architecture

[St an

Functional Entity (FE)/-

1 [ey ey -
nE.u Eut_Dova_ Coputilly

‘.l'll FPET_ I Ses INT PR Bias

-ﬂ‘lﬁmblﬂ-

ﬂhmlﬁ..h
ﬁu_ur-u__uq—v—
M_Mvﬂht_h-—* 1

2&”*—- {o|
L]

'-_.._u_ P 'r-prlun-r

tﬂhﬂ‘wm;" . |
e e e b {

- .-—_-.11-1_—"—“- Al iy Y Wees W '. e

_,' ; | n- /
" Technical Funcﬂonal Entity (TFE) |

e

Eu.ModSt.2041 | Head

8.1.2 Principle of model-based definition of requirements

Eu.ModSt.2061 | Head

8.1.2.1 Applied description methods for model-based requirements

Eu.ModSt.2044 | Info

To best support the verification and validation effort of specified SUS/SIUS requirements and to keep the specification understandable for engineers, the EULYNX specification approach aims to describe the functional
SUS/SIUS requirements in the form of operational specifications.

Eu.ModSt.2047 | Info

As mentioned above, the CCS systems currently specified in EULYNX are reactive control systems and characterised by the constant interaction and synchronisation between the system and its environment.

Eu.ModSt.2048 | Info

A reactive control system, when switched on, engages in stimulus-response-behaviour in order to create desirable effects in its environment. For that reason, the EULYNX methodology proposes the specification of the
functional system requirements in stimulus-response form.

Eu.ModSt.2042 | Info

As the focus of EULYNX is on the specification of interfaces, the behaviours of EULYNX systems are specified using an interface centric approach.

Eu.ModSt.2111 | Info

In the following sections, the concepts of "operational specification”, "stimulus-response specification" and "interface centric approach" are explained.

Eu.ModSt.2043 | Head

8.1.2.1.1 Operational specification

Eu.ModSt.2045 | Info

An operational specification describes the behaviour of a system using an abstract machine. This can be realized using data-flow diagrams that assemble functions connected by data flows. Since data flows may not always
be natural for expressing control aspects, finite state machines can be preferred to describe the temporal and behavioural views of a system.

Eu.ModSt.2046 | Info

Control is specified using states, events, and transitions in response to stimuli. There are many variants of state machine specification languages. A state machine can be executed, to validate the behaviour, and static
analyses of the state machine can be performed (including consistency properties, and formal verification of properties).

Eu.ModSt.7067 | Info

In general, using an operational specification of behaviour and requirements offers an advantage in that it enables to determine if a specific property holds or not. This can prevent communication issues between different
actors (designers, builders, customers, and users) since the operational specification provides a reference model to check the property against.

Eu.ModSt.114 Info

For an operationally specified functional system property, there is a test that they can all perform and agree on the outcome - either the SUS/SIUS to be specified does or does not satisfy this property (see Figure 115).

© EULYNX Partners

Page 19 of 120

Modelling Standard

ID Type Requirements
Eu.ModSt.7068 | Info Whether an operational specification exhibits a specific property may often-case be easy to determine but it may also offer a challenge, for various reasons. To determine if a property holds or not can be non-trivial due to
e.g., specification complexity that may prevent inspection alone, state-space explosion impacting the results attainable in automated analysis, and semantics for interpretation that can complicate analyses.
Eu.ModSt.7069 | Info In general, it is desirable to have an implementation-independent operational specification, so that all stakeholders can agree on and use the same specification. The reason for this is to avoid, when the SUS/SIUS is
delivered, that supplier and customer dispute about whether SUS/SIUS meet the desired properties or not. In general, it is recommended that SUS/SIUS specifications are operationalised as much as possible [8].
Eu.ModSt.115 | Info
Figure 115 Test of an operationally specified system property
. Eeavlt 1ent , . rapnerty
\J 3 (_JI:]-.II-," | g nvil onn ~naratinnally sped i1ed II"\I _,}:lr
i Operauuiaiiy =i
R = y
naiigauon of an operauonaily speciied propert ——
; whan| in_T1_Stimulis_1 ¥ _
e — — {:z_ |
desired effect |' Eveyiou D1 Pisporne = —) (Enipious_D1_Resporae := "dalied efect
whan] in_T2 Stimulas 2 W
r i when{ in_T1_Stimulus_1)
' | c)
whan{in_T2_Stemdus,_ 3 y 'E"IE'J-T_I-RE"“'T’"F,
when("".-3_5:-—“-,:_; V
Stimul us-
respo ;
Ponse behaWDUr
Eu.ModSt.7066 | Head | 8.1.2.1.2 Stimulus-response specification
Eu.ModSt.7070 | Info Stimulus-response specifications are an important class of operational specifications.
Eu.ModSt.2049 | Info A stimulus-response specification has the form
SANDC=>r
where s is a stimulus, C is a condition on the system state, and r is a response. The design process consists of decisions about r.
Eu.ModSt.2050 | Info In a nutshell, whenever a stimulus occurs there will be a corresponding response. The kind of response depends on the condition on the state of the system. Please note: this is also said to be a response if a stimulus
occurs and the system "keeps quiet".
Eu.ModSt.2051 | Info A single stimulus-response pair is henceforth also referred to as an interaction.
Eu.ModSt.2052 | Info An interaction is generally formulated according to the following action block schema comprising four action steps (see Figure 173):

Interaction:
I. - The SUS or SIUS receives a stimulus.
IL. The SUS or SIUS validates the stimulus.
III. The SUS or SIUS changes its internal state (or not).
IV. The SUS or SIUS responds with the result (Please note: a result may also be that the SUS or SIUS "keeps quiet").

However, there may be more than four action steps applied or fewer.

© EULYNX Partners

Page 20 of 120

Modelling Standard

ID

Type

Requirements

Eu.ModSt.173

Info

Figure 173 The four steps of an action block

ablocks
System

N

validate ||

A/
Y

change “l

o W

Yfir‘mlus
|

Button

=

M response
(-!:g: 4+ IVE

Light

i

\

L

Eu.ModSt.2053

Info

An interaction always starts with the stimulus identified by a dash "-" (see step I in ID 355 above). A stimulus may have its origin
¢ in the request of a primary actor (a primary actor is an actor in the environment of the SUS or SIUS who requires a service from it),
¢ in a timed trigger,
¢ in an intrasystem event (that is, an event that occurs in the system) or
¢ in the entering or leaving a system state.

Eu.ModSt.2054

Info

Interactions may be extended to contracts.

Eu.ModSt.2055

Info

The central idea of contracts is a metaphor on how the SUS or SIUS and the actors collaborate on the basis of mutual obligations and benefits. Having written functional requirements in the style of interactions, those
contracts can easily be obtained - interactions together with pre- and postconditions.

Eu.ModSt.2056

Info

If a SUS or SIUS provides a certain functionality, it may
a) expect a certain condition to be guaranteed on entry by an actor that sends the request: the precondition of the interaction - an obligation for the actor, and a benefit for the SUS or SIUS, as it relieves it from having
to handle the cases outside of the precondition.
b) guarantee a certain property on exit: the postcondition of the interaction - an obligation for the system, and obviously a benefit (the main benefit of the request) for the actor.

Eu.ModSt.2057

Info

The following applies for preconditions and postconditions in this context:
a) The interaction may only be triggered by the actor if the precondition is met; this presupposes that the actor knows the current system condition,
b) The system must ensure in turn that the postcondition is met after the completion of the interaction. If no explicit postcondition has been defined (indicated by three dashes "---"), the requirement applies that the
postcondition is identical to the precondition.

Eu.ModSt.2058

Info

A contract is formulated according to the following schema:

Precondition:
Definition of the precondition

Interaction:

I. - The SUS or SIUS receives a stimulus.

III. The SUS or SIUS changes its internal state (or not).

IV. The SUS or SIUS responds with the result (Please note: a result may also be that the SUS or SIUS "keeps quiet").

Postcondition:
Definition of the postconditions

Eu.ModSt.2059

Info

Alternatively to this, functional system requirements may be written without using contracts. In these cases it can not be assumed that the actor knows the current SUS or SIUS condition and complies with the
precondition.

The preconditions of the interactions are empty and the SUS or SIUS must first check on itself whether the preconditions are met before responding to the stimulus. The above schema is modified as follows (see text in
italics):

© EULYNX Partners

Page 21 of 120

Modelling Standard

ID

Type

Requirements

Eu.ModSt.2059

Precondition:

Interaction:

I. - The SUS or SIUS receives a stimulus.

I1. 7he SUS or SIUS validates the stimulus considering the current internal state.

III. The SUS or SIUS changes its internal state (or not).

IV. The SUS or SIUS responds with the result (Please note: a result may also be that the SUS or SIUS "keeps quiet").

Postcondition:
Definition of the postconditions

Eu.ModSt.2060

Info

In those cases, the check may fail in the second step. From this step on, a different internal condition might need to be entered and a different response might need to take place. Variants of the interaction would
therefore have to be considered.

Eu.ModSt.2062

Info

Interactions and contracts, as defined above, provide the basic schemata for the model-based description of functional system requirements in stimulus-response form. Depending on the abstraction level two model-
based description methods are used:

¢ Use case scenarios (interaction scenarios) are used at abstraction level AL1 Subsystem Definition defining the interaction of the subsystem with its environment.
» State machines are used at abstraction level AL2 Subsystem Requirements completely refining the externally visible stimulus-response behaviour described by means of the use case scenarios at abstraction level AL1
Subsystem Definition.

Eu.ModSt.2063

Info

These two model-based description methods will be demonstrated defining the functional system requirements of a simple system based on the functional user requirements (FUR) listed below:

FUR1: The user wants to switch on the light by pressing a button if the light is off,
FUR2: The user wants the light to be switched off automatically after a defined time.

Eu.ModSt.2064

Info

As shown in Figure 3the SUS named "System" is connected to the two actors "Light" and "Button" in the environment.

Eu.ModSt.2065

Info

Figure 3: Simple system

«blocks
System

()

Button

%
ez
L

1

Ll

Light

Eu.ModSt.2066

Info

According to the functional user requirements described above the SUS is required to fulfil the functional system requirements (FSR), described in classical textual form below:

FSR1: The system shall switch on the light if the light is switched off and the button is pressed,
FSR2: The system shall switch off the light automatically after the time t_Light_On has expired.

Eu.ModSt.2067

Head

8.1.2.1.3 Description method using use case scenarios

© EULYNX Partners

Page 22 of 120

Modelling Standard

ID Type Requirements
Eu.ModSt.2068 | Info The functional user requirements FUR1 and FUR2 defined above (see ID 215) require the SUS "System" to provide a service for the users. As shown in Figure 2070, this service is defined as system use case "SysUC1.1:
Switch on the light time-limited".
Eu.ModSt.2069 | Info System use cases describe the functionality of a SUS or SIUS in terms of how it is used to achieve the goals of its various users. The users of a SUS or SIUS are described by actors (i.e. "Button" and "Light"), which may
represent external systems or humans who interact with the system. A UseCase is denoted by an ellipse, and the actors participating in the UseCase are connected to the ellipse by solid lines.
Eu.ModSt.184 | Info On the original work on UseCases by Ivar Jacobson, Jacobson defines a UseCase as follows [20]:
LA use case is a sequence of transactions performed by a system, which yields an observable result of value for a particular actor. A transaction consists of a set of actions performed by a system and is invoked by a
stimulus from an actor to the system, or by a timed trigger within the system".
Eu.ModSt.186 | Info To understand transactions in the database sense is too narrow, because if a transaction succeeds then changes are made to the system (committed), otherwise the system is reverted to the original state (rollback).
Eu.ModSt.187 | Info Cockburn interprets in his book [22] what Jacobson [20] means by a transaction in the four steps of an action block (see Figure 173) representing an interaction.
Eu.ModSt.189 | Info The flow between the trigger and the result of a use case has a time coherence, i.e. no domain interruption is possible.
Eu.ModSt.2070 | Info
Figure 2070: UseCase shown in a UseCase diagram
uc [Package] System - Functional Context [Functional Viewpoint - System Deﬁnition]J
T |
— e [
I I /
| SysUC1.1: Switch I
/ T on the light |
| _/mmi"i"d
5 I " "
Button | | Light
e ool A P e e e R d
Eu.ModSt.2071 | Info A complete use case, i.e. a primary UseCase consists of one or multiple interactions which can alternatively be formulated as contracts. A UseCase having only one interaction is an interaction written as a use case.
Eu.ModSt.2072 | Info The interactions specifying a UseCase such as "SysUC1.1: Switch on the light time-limited" are described in a model-based way by use case scenarios. Use case scenarios are represented by SysML sequence diagrams.
Eu.ModSt.2073 | Info The specification of the use case scenarios may cover a standard sequence and one or several alternative sequences, e.g. to represent a failed validation of the stimulus. Normally, the "good case" of an use case scenario is
specified in the "standard sequence" and deviating sequences in "alternative sequences". If no unique standard sequence can be determined, it is also possible that only "alternative sequences" exist.
Eu.ModSt.2074 | Info For this reason, a use case may be defined by use case scenarios in the following compositions:
- one Main Success Scenario and any number of Alternative scenarios,
- only one Main Success Scenario,
- any number of Alternative Scenarios without a Main Success Scenario.
Eu.ModSt.2075 | Info Several interactions may be combined directly after each other without explicitly depicting the pre- and postconditions between them in an interaction scenario if the postconditions of the previous interaction are identical to
the preconditions of the subsequent interaction.
Eu.ModSt.2076 | Info If it can be assumed that the current state of the SUS is visible in its environment, the textually formulated functional requirements FSR1 and FSR2 (see ID Eu.ModSt.2066) can be described as contracts:

FSR1:
Precondition:
System is in state OFF

Interaction:

I. - System receives the request "Button_Pressed" from the actor "Button".

III. System changes to state "ON".

IV. System responds to the actor "Light" with the command "Switch_Light_On".

Postcondition:

© EULYNX Partners

Page 23 of 120

Modelling Standard

ID

Type

Requirements

Eu.ModSt.2076

System is in state ON

FSR2:
Precondition:
System is in state ON

Interaction:

I. - System detects that the time "t_Light_ ON" has expired.

III. System changes to state "OFF".

IV. System responds to the actor "Light" with the command "Switch_Light_OFF".

Postcondition:
System is in state OFF

Eu.ModSt.2077

Info

The corresponding use case scenario in the form of a Main Success Scenario is depicted in Fgure 2078. FSR1 and FSR2 are written as contracts and as a consequence no Alternative Scenarios are required. As the
precondition of FSR2 is identical to the postcondition of FSR1 they are not explicitly depicted in the use case scenario.

Eu.ModSt.2078

Info

Figure 2078 Main Success Scenario with FSR1 and FSR2 written as contracts

sd SysUC1.1 - Main Success Scenario [Sys SD 1.1.1]] f(;’t

[Button] [Light

Main Success Scenario:
Switch on the light time-limited (written as
contract)

Precondition:
Svystem is in state OFF.

Interaction 1.1.1.A: Buticn Pressed

1. - System receives the request Button_Fressed
from the actar Button.

2. System changes to state ON.

f Switth_Light_On

.l
.

3. System responds to the actor Light with the
command Switch_Light_On.
Interaction 1.1.1.B: after {{_Light_Qn

4. - System detects that the time t_Light On has
expired.

P LT L L P E TP ET PR EEPEEPEEEEE

==

|

h. System changes to state OFF. Switgh_Light Off

ol
iy

B. System responds to the actor Light with the
command Switch Light Off

Postcondition:

System is in state OFF.

Eu.ModSt.2079

Info

If it can not be assumed that the current state of the SUS is visible in its environment, the textually formulated functional requirement FSR1 is to be described as interaction without precondition. FSR2 may be described
as contract because the interaction is internally time-triggered and it is required that the current state may only be changed by this trigger:

FSR1:
Precondition:

Interaction:

I. - System receives the request "Button_Pressed" from the actor "Button".
II. System evaluates that the request is valid because it is in state OFF.
III1. System changes to state "ON".

© EULYNX Partners

Page 24 of 120

Modelling Standard

ID Type Requirements
Eu.ModSt.2079 VI. System responds to the actor "Light" with the command "Switch_Light_On".
Postcondition:
System is in state ON
FSR2:
Precondition:
System is in state ON
Interaction:
I. - System detects that the time "t_Light_ ON" has expired.
III1. System changes to state "OFF".
IV. System responds to the actor "Light" with the command "Switch_Light_OFF".
Postcondition:
System is in state OFF
Eu.ModSt.2080 | Info The corresponding use case scenario in the form of a Main Success Scenario is depicted in Figure 2081.
Eu.ModSt.2081 | Info
Figure 2081 Main Success Scenario with FSR1 not written as contract
sd SysUC1.1 - Main Success Scenario [Sys SD 1.1 .z]J i ﬁ
Button] [Light
i . M !
Main Success Scenario: i E E
Switch on the light time-limited (not written as g i !
contract) i ; i
Precondition: E E i
- - |
Interaction 1.1.2.A: E : Butlgn Pressed |
1. - System receives the request Button_Pressed i H
fram the actor Button. E E
2. System evalutes that the request is valid because i E i
it is in state OFF. i : :
3. System changes to state ON. i EJ ? Switgh_Light_on !
4. System responds to the actor Light with the E - :
command Switch_Light On. ! !
Interaction 1.1.2.B: after {t_i_Ligr‘rt_fE)n} E
5. - System detects that the time t_Light_On has : : i
expired. i : i
6. System changes to state OFF. i : E
7. System responds to the actor Light with the E i . . :
command Switch_Light OF ! U Switen Light_Ofr
1 |
Postcond ition: i E i
System is in state OFF. i ;] l
Eu.ModSt.2082 | Info As FSR1 is not written as a contract, action step 2 of the corresponding interaction may be evaluated as not valid. As a consequence, an alternative variant of the interaction has to be described:

FSR1:
Precondition:

© EULYNX Partners

Page 25 of 120

Modelling Standard

ID Type Requirements
Eu.ModSt.2082 Interaction:
I. - System receives the request "Button_Pressed" from the actor "Button".
III. System evaluates that the request is not valid because it is in state ON.
IV. System remains in state "ON".
Postcondition:
System is in state ON
FSR2:
Precondition:
System is in state ON
Interaction:
I. - System detects that the time "t_Light_ ON" has expired.
III. System changes to state "OFF".
IV. System responds to the actor "Light" with the command "Switch_Light_OFF".
Postcondition:
System is in state OFF
Eu.ModSt.2083 | Info The corresponding use case scenario in the form of an Alternative Scenario is depicted in Figure 2084.
Eu.ModSt.2084 | Info
Figure 2084 Alternative Scenario
sd SysUC1.1 - Atemative Scenario [Sys SD 1_1_3]J ﬁ i
Button| [Light
: i [|
Alternative Scenario: E i E
Switch on the light time-limited (not written as ' : !
contract) ' i i
Precondition: E i E
- : i
Interaction 1.1.3.A: ; E Butign Pressed |
1. - System receives the request Button_Fressed - i
from the actor Button. E i
2. System evalutes that the request is not valid : E i
because it is in state ON. : i :
(] 1 1
3. System remains in state OMN. : i :
Interaction 1.1.3.B: ; i i
4. - System detects that the time t Light On has : E i
expired. ; i |
L |
5. System changes to state OFF. i i i
] | 1
6. System responds to the actor Light with the :) . '
command Switch_Light_OF E I_r Swifgh_Lont Ofr
Postcondition: E i E
System is in state OFF. : E | i
Eu.ModSt.2085 | Head | 8.1.2.1.4 Description method using state machines
Eu.ModSt.2086 | Info State machines are used at abstraction level AL2 System Requirements to completely refine the stimulus-response behaviour which has been described by means of the use case scenarios at abstraction level AL1 System
Definition.
Eu.ModSt.2087 | Info Figure 2088 shows a state machine specifying the stimulus-response behaviour of the UseCase "SysUC1.1: Switch on the light time-limited".

© EULYNX Partners

Page 26 of 120

Modelling Standard

ID

Type

Requirements

Eu.ModSt.2088

Info

Figure 2088 FSR1 and FSR2 specified using a state machine

stm Switch_on_the_light_time_limited - Behaviour [STD 1]|

oF =
when(Button_Pressed)/
Switch_Light_On := TRUE;

ON

after(t_Light_On)/
Switch_Light Of := TRUE;

Eu.ModSt.2089

Info

The declaration of this state machine is identical to the original textual requirements (see ID 93) FSR1 (Transition from state "OFF" to state "ON") and FSR2 (Transition from state "ON" to state "OFF"):
FSR1: The system shall switch on the light ("Switch_Light_On := TRUE") if the light is switched off (state "OFF") and the button is pressed ("when(Button_Pressed)").

The Transition from state "OFF" to state "ON" represents a functional system requirement and may be textually formulated in the requirements specification document as shown below:

Info | OFF

Req | when(Button_Pressed)/Switch_Light_On := TRUE {OFF - ON}

Info | ON

FSR2: The system shall switch off the light ("Switch_Light_OFF := TRUE") automatically after the time t_Light_On has expired ("after(t_Light_On)").

The Transition from state "ON" to state "OFF" represents a functional system requirement and may be textually formulated in the requirements specification document as shown below:

Info | ON

Req | after(t_Light_On)/Switch_Light_Off := TRUE {ON - OFF}
Info | OFF

Eu.ModSt.7013

Head

8.1.3 Overview introduction to the EULYNX MBSE Process

Eu.ModSt. 1659

Info

The EULYNX MBSE process is part of the EULYNX systems engineering process with the main process tasks documented in the EULYNX verification and validation plan [31]. The EULYNX systems engineering process is
closely oriented on the CENELEC system life cycle defined in EN 50126 and covers the phases listed below:

Phase 1: Concept,

Phase 2: System definition,

Phase 4: System requirements,

Phase 5: Apportionment of system requirements,

Phase 10: System acceptance and

Phase 11: Operation and maintenance,

Eu.ModSt. 1662

Info

The CENELEC system life cycle follows the V-model, which highlights verification and validation, especially regarding the fulfilment of safety requirements, as important tasks.

Eu.ModSt.7101

Info

Already during the specification phases of the V-model, verification and validation are important activities, applied to assure the quality of the specification itself.

Eu.ModSt.7102

Info

This is especially necessary for the context of the EULYNX MBSE approach, where models of the required system behaviour represent abstract reference implementations of the future system (virtual prototypes) and are
regarded as mandatory requirements in tender specifications.

Eu.ModSt.7103

Info

Following this notion, it is necessary to provide a “small V"-process, guiding the top-down development of those virtual prototypes using executable SysML state machines and their validation and verification within the
specification phases of the underlying “big V"-CENELEC process.

© EULYNX Partners

Page 27 of 120

Modelling Standard

ID Type Requirements

Eu.ModSt.7104 | Info In Figure 1658, the "small V" is highlighted in the "big V" and pictures the relationships of verification and validation as part of the virtual prototype development.
Eu.ModSt.1658 | Info

Figure 1658 EULYNX "smal V" model

Validation of State Machine Modeis by IMs
m: Hﬁcmmgm\ -
uirements [SDs) Ly L i
by IMs \%f}g’ff{ Virtiaal PR
.
%, %
Verification of Sm\
Machines by
Modellers
The “small V™ process of the
EULYNX specification development
forms a self-contained part of the
“big V" process of the [subsequent)
total system development. Source: EULYNX
Eu.ModSt.1539 | Info The AM MBSE essentially covers the "Formalised Requirements" and "State Machine Implementation” phases of the "small V" process. It defines the model views at abstraction levels AL1 and AL2 for the creation of:
¢ specification models of subsystems (SUS) and
* specification models of interfaces (SIUS).

Eu.ModSt.7469 | Info The requirements at abstraction level AL3 of the AM MBSE are currently not defined in EULYNX in a model-based manner.
Eu.ModSt.1555 | Info The behaviour of EULYNX SUS/SIUS is specified from the black box perspective. In a black box specification only the black box behaviour of the SUS/SIUS is considered, i.e. only the external properties of the SUS/SIUS are

defined (externally visible input/output behaviour).
Eu.ModSt.7105 | Info User Requirements derived from infrastructure manager (IM) expert knowledge are represented in both cases in the requirements management tool in the form of a "Function List". It lists the required functions used as

input information for the creation of the model views at abstraction level "AL 1 Subsystem Definition” "or "Interface Definition" of the AM MBSE using the modelling tool.
Eu.ModSt.7931 | Info If an architectural description of the overall system is available in the form of an analysis model, the model artefacts of the analysis model required for the creation of the respective EULYNX specification model are

transferred to the EULYNX specification model by model-to-model transformation.
Eu.ModSt.7470 | Info At this point, the SUS use cases (services) are defined with their stimulus-response behaviour selectively specified by means of use case scenarios using SysML sequence diagrams (Formalised Requirements).
Eu.ModSt.7471 | Info Subsequently, the conformity of the model to the SysML specification and the modelling rules defined in the EULYNX Modelling Standard is statically checked using the modelling tool by a modeler in the role of a model

verifier.
Eu.ModSt.7472 | Info Additionally, the use case scenarios are validated by means of inspection by the corresponding IMs in the roles of model validators.
Eu.ModSt.7473 | Info In the next step, the system views created at abstraction level "AL 1 Subsystem Definition/Interface Definition” are refined at abstraction level AL 2 Subsystem Requirements/Interface Requirements” by means of

executable SysML state machines (State Machine Implementation).
Eu.ModSt.7474 | Info The conformity of the model to the SysML specification and the EULYNX Modelling Standard is verified tool-based and by means of inspection by the model verifier.
Eu.ModSt.7475 | Info To implement the state machines as a virtual prototype, simulation code is generated. Subsequently, the GUI of the virtual prototype is designed, and an executable is created.
Eu.ModSt.7476 | Info The executable representing the virtual prototype enables both the tool-independent standalone simulation of the specified behaviour and when connected to the simulation tool the simulation together with the animation

of the corresponding state machines.

© EULYNX Partners

Page 28 of 120

Modelling Standard

ID Type Requirements

Eu.ModSt.7477 | Info The virtual prototype enables simulation-based testing of the specified behaviour by injecting stimuli on the GUI and observing the responses optically indicated. The principle of a virtual prototype is depicted in Figure
7481.

Eu.ModSt.7478 | Info In the following step (State Machine Testing), the conformity of the behaviour defined by the state machines to the use case scenarios in the overlying abstraction level "AL1 Subsystem Definition/Interface Definition” is
dynamically verified by simulation-based testing of the virtual prototype carried out interactively by the model verifier.

Eu.ModSt.7479 | Info For this purpose, the scenarios are used as test cases and in parallel, the animated state machines observed (white box testing of the behaviour). Additionally, the correct creation of the state machines such as freedom of
deadlocks is verified by the model verifier using interactive state machine animation based on a dedicated test specification.

Eu.ModSt.7480 | Info The standalone virtual prototype is then handed over to the IMs to validate the behaviour specified by the state machine by means of simulation-based testing (black-box testing of the behaviour). The validation process is
finished successfully when all participating IMs provide evidence that their user requirements (including safety requirements) are satisfied by the specified behaviour. The successful validation process leads to the production
of a new baseline.

Eu.ModSt.7481 | Info
Figure 7481 Principle of a virtual Prototype

o =
OoOon0n=

Eu.ModSt.7094 | Info Figure 7116 shows the commonly used engineering paths for generating the model views of the SUS or SIUS specification models in conformity with the "small V" shown in Figure 1658. Depending on the project-specific
input conditions, the engineering paths can also be applied in a modified form.

Eu.ModSt.7118 | Info In general, the engineering path for creating the SUS model views (black dashed arrows) includes the engineering path for creating the SIUS model views (red dashed arrows).

Eu.ModSt.7117 | Info The model views used reflect the current state of the EULYNX MBSE methodology and may be complemented by further model views in the future (e.g. model views of the Technical Viewpoint or model views on AL3).

© EULYNX Partners

Page 29 of 120

Modelling Standard

ID Type Requirements
Eu.ModSt.7116 | Info
Figure 7116 Engi paths of the EULYNX "smal V" model
Technical Viewpoint | CSP
-
S
______ (S
!
g ")
©
. =
Functional | (73) Functional EF b) I e Technical | - =
i & Entity T ._,-"':‘ Functional Entity i v
Functional ‘ﬁ_ﬂ_ _____________ Funclional | . 8§ _---" - . f (10a) . =
Fal‘lii::)nmg Parti:unrlg (5) I 4 I é
AL2 - ;]
(Ba)y (6b) g Functional ’
; Architecture
Functional Functional g -.‘?b} hhlmam I g : l
Architecture Archilecture | = b [& A .
Baci I _ ---"(9a) -- -+ Engineering path SUS
e o sy o el o oo o S - ---+ Engineering path SIUS
| l T I. Il I
Eu.ModSt.1549 | Info The engineering path for creating the SUS model views starts at the Functional Viewpoint on abstraction level AL1.
Eu.ModSt.1241 | Info Task (1): creation of model view "Functional Context"
Based on stakeholder requirements (for example IM requirements) which are defined in the area User Requirements of the MBSE SF, for example in the form of a function list, the model view "Functional Context" is created
(1).
Eu.ModSt. 1630 | Info As shown in Figure 1633, the model view Functional Context summarises the use case structure graphically and names all use cases the SUS is expected to perform. Furthermore, it allocates the use cases to the SUS and
defines their interrelations as well as their relations to the actors in the SUS environment.
Eu.ModSt.1557 | Info Use cases describe the functionality of a SUS such as "Subsystem Point" in terms of how it is used to achieve the goals of its various users. In model view "Functional Context" they are denoted by ellipses, and the actors
participating in the use cases are connected to the ellipses by solid lines.
Eu.ModSt.1623 | Info The users of a system are described by actors, which can represent external systems such as "Point machine" or people who interact with the system.
Eu.ModSt.1628 | Info Consequently, a use case does not contain any information how it is implemented in the SUS.

© EULYNX Partners

Page 30 of 120

Modelling Standard

ID Type Requirements

Eu.ModSt.1633 | Info
Figure 1633 Model view "Functional Context" of a SUS

Ut [Package] Subsystem Pont - Funcional Context [Funclional Viewpoint - Subsvstem Definition - Opﬂutiun]]

. I T T T

| Subsystem poi

AWA

Subsystem-
Electronic
Interlocking

Point machine

Eu.ModSt.1622 | Info Task (2): creation of model view "Use case scenarios"
Based on the definitions in the model view "Functional Context", the model view "Use case scenarios" is subsequently created.

Eu.ModSt.1653 | Info A use case may be defined by one or more use case scenarios (SysML sequence diagrams) in order to describe the exchange of messages between the SUS and its environment. It is the central construct to define parts of
behaviour of the SUS that can be observed at the system boundary.

Eu.ModSt.1634 | Info An example use case scenario of the use case "P_UC2.1.1.1: Commanding and reversing" is depicted in Figure 1635.

© EULYNX Partners Page 31 of 120

Modelling Standard

ID Type Requirements
Eu.ModSt.1635 | Info
Figure 1635 Model view "Use case scenario" of a SUS
P 1:1.1: ing and in }?; i
ISubs;ﬂem -Electronic h:erll:-v:'-:lngﬂF'ﬂ ntr'"ta;hinei W
I =
M ain Success Scenario: M oving of the Point with a single point machine I | |
Hen 4W [P 50 2.1.1.1.1] |
Precondition: | l |
The Subsystem - Point is in the state OPERATIONAL. | |
The Subsyslem - Paintis confgured with a non-4-wire interiace to the | | |
P gint machine. | |
The Subsystem - Faintis in: |
- an E nd position *Y", or | | I
= No end position, or | | |
-an Unintended pesgition |
Interaction 2.1.1.1.1.4: ! ! ,
L]
1. - The Subsystem - Point receives fom the Subsystem - Elecironic ! A g o
Interizcking the Command to move the Point to an E nd position =" I | Cd Move_Point{ End Position)
2. The Subsystem - Point sends the Command to the Peint machine Lo 1 < : T
m ove the Point maching to an E nd position "X, At this moment the Moving |
Subsysteam - Point starts to moniter the tim & pariod I |
Con_tm ax_P oint_O pemation, | {<=Con_tmax_Point_Operaton)
Interaction 2.1.1.1.1.8: | | I
opt [The Subsystem Point was previously in an E nd position or a opt | I |
Unintended position] I : |
3.a1 - The Subsystem - Poinl recenes fom the Point maching the ™
Infbrmation that the Point machine is in Mo end position. | “mmnn_m_Em_Fm"
3. The Subsystem - Point reports to the Subsystem - Electrnic = 1
Interiocking that the Point is in No end position U Msg_Point_Postipn(hoEndF osition) I
end opt 1 1 |
T T
Interaction 2.1.1.1.1.C: | | I
4. - The Subsystem - Point receives fom the Point maching the | 1) »
Inbrmation that the Point machine is in an E nd position "X : v Information_ho_End_Posttion
5. The Subsystem - Point sends the-te.lmma.na to the Point maching 1o : B Stop._Moving |
stop moding the Point machine, The Subsystem - Point stops Lo monitor
the time period Con_tmax_Point_0 peration 1 I
§. The Subsystem - Point repots (o the Subsystem - Electronic @ |) : y :
Interiacking that the Point is in an E nd position "X | Msg_Point_Position{EndPositionX) |
Postcondition: I |
The El.lb!.}'ﬂ!m = Faint is in an End positian ", l L] I
Eu.ModSt.1629 | Info Task (3): creation of model view "Logical Context" of a SUS
Based on the definitions in the model views "Functional Context" and "Use case scenarios" the model view "Logical Context" is subsequently created at the Logical Viewpoint on abstraction level AL1.
Eu.ModSt.1535 | Info In the example shown in Figure 1540 the model view "Logical Context" is depicted. It describes the structure of the SUS at the top level and the actors in the environment interacting with it and their quantity structure

(multiplicities). Furthermore, the logical interfaces such as SCI-P, SSI-P, P3 and so on between the SUS and the actors are defined.

© EULYNX Partners

Page 32 of 120

Modelling Standard

ID Type Requirements
Eu.ModSt.1540 | Info
Figure 1540 Model view "Logical Context" of a SUS)
bdd [Fackage] Subsystem Foint - Logical Context [Logical Viewpoint - Subsystem Definition] |
alogical structural entitys
wlogical structural entity» 5 . Subsystemn Point
Subsystem Electronic
Interlocking SCIP SCi-P
wlogical structural entitys
Subsystem Security Services 1
Platform s8-P &SP
1 4 |senvironmental structural antitys |
- Pointmachine
wlogical structural entitys 1 1 P3 F3
SubsystemMaintenance and | .2 SMIP
DataManagement 1 1
SOP spoKP
senvironmental structural entitys | 1 1
Basic Data Identifier Fa -
wenvironmental structural entifys | 4 1 4 1 |wenvironmental structural entitys |
Maintainer = =g P2 P2 Fmm Sty
Eu.ModSt.1562 | Info Task (4): creation of model view "Logical Context" of the interfaces to be standardised
Based on the definitions of the logical interfaces defined in model view "Logical Context" of a SUS, the model view "Logical Context" of its standardised interfaces (SIUS) is subsequently created at the Logical Viewpoint on
abstraction level AL1.
Eu.ModSt.7122 | Info At the upper level of abstraction an interface is represented by a SysML association. An association is depicted as a continuous line between the communication participants. The association that represents a logical
interface in the model view "Logical Context" of the SIUS corresponds to the respective association in the model view "Logical Context" of the SUS.
Eu.ModSt.1626 | Info The model view "Logical Context" of a SIUS as shown in Figure 1637 describes the logical view of an interface at the upper level of abstraction.
Eu.ModSt.7123 | Info The SysML association is linked to a SysML association block, which serves to refine the relationship. The global behaviour of the application protocol (Railway Control Protocol: RCP) is then

specified in this later.

© EULYNX Partners

Page 33 of 120

Modelling Standard

ID Type Requirements

Eu.ModSt.1637 | Info

Figure 1637 Model view "Logical Context" of a SIUS

xlogical structural entity»
ical structural Subsy stem Point -
i sadiriraideinc M B 1 e Logical Context of SUS
Interiocking SCI-P » SCI-P
bdd [Package] SCI-P - Logical Context [Logical "Jrqumnt - Interface Definition) |
wesearsauaens Logical Context of SIUS
" S8CI-P
: Subsystem Point - Functional
Subsystem Electronic Interlocking 5 | Architecture
wlngical structural enfitys 1 4 : SCILP - 1 | «logical structural entitys
Subsystem Electronic Interlocking SCIP Subsystem Point
: SCIP

Eu.ModSt. 1627 | Info Task (5): creation of model view "Functional Partitioning" of the interfaces to be standardised

Based on the definition of the model view "Logical Context" of the relevant interfaces, the model view "Functional Partitioning" is subsequently created at the Functional Viewpoint on abstraction level AL1.
Eu.ModSt.1636 | Info The model view "Functional Partitioning" as shown in Figure 1643 describes the refinement of the interface defined in model view "Logical Context" using FEs. These FEs specify the local behaviours (see chapter 8.2.4) of

the application layer (PDI: Process Data Interface Protocol) of the communication protocol stack on each side of the communication link.
Eu.ModSt.7901 | Info The FEs are assigned to the involved subsystems via reference associations (marked with a white diamond). The reference associations express that the FEs are not part of the subsystems, but are only used there. They

are part of the PDI.
Eu.ModSt.7319 | Info In addition, the respective possible number of FEs is determined by multiplicities.
Eu.ModSt.7320 | Info The model view "Functional Partitioning" of a SIUS is the basis for the model view "Functional Architecture" of a SIUS. While the former, however, defines the absolute behaviour (the maximum possible number of FEs is

defined), the model view "Functional Architecture" also allows an excerpted description (Description of different configurations).

© EULYNX Partners

Page 34 of 120

Modelling Standard

ID Type Requirements
Eu.ModSt.1643 | Info
Figure 1643 Model view "Functional Partitioning" of a SIUS
bdd [Package] SCI-P - Functignal Partitioning [Functional Viewgsoint - Interface Requirements]_]
elogical structural entitys.
SCLP
Subsystem Electronic Interlocking | ' Subsystem Point |
|
|
slogical structural entitys 1 | SCLE - 1
Electronic Interlocking %) e Subsystem Point
¢ O Q QO QO
1 1 1 1 1 1
Generic requirements for subsystems |
4
SCI-P - Functional Viewpoant
4
1
Eu.ModSt.1640 | Info Since the FEs defined in the model view "Functional Partitioning" are used for the further specification of both the SUS and the SIUS, the engineering path splits at this point. The further creation of the model views takes
place along two different engineering paths, which are described in the following two subchapters 8.1.3.1 Engineering path SUS and 8.1.3.2 Engineering path SIUS.
Eu.ModSt.1927 | Head | 8.1.3.1 Engineering path SUS
Eu.ModSt. 1537 | Info Task (6a): creation of model view "Functional Partitioning" of a SUS
Starting from the model view "Functional Partitioning" of the involved SIUS, the engineering path continues with the generation of the further model views of the SUS at the Functional Viewpoint at abstraction level AL2.
Eu.ModSt.208 | Info First, the model view "Functional Partitioning" of the SUS as depicted in Figure 1451 is created. It describes the refinement of the SUS by means of the FEs defined in the SIUS model view "Functional Partitioning", which
represent the local behaviours of the PDI, as well as the FEs specific to the SUS (linking behaviour according to chapter 8.2.4).
Eu.ModSt.7902 | Info FEs which are assigned to the subsystem via reference associations (marked with a white diamond) are not part of the subsystem, but are only used there. They represent the local behaviour of the PDI and are part of it.
Eu.ModSt.7903 | Info FEs which are assigned to the subsystem via composite associations, i.e. so-called whole-part relationships (marked with a black diamond) are part of the subsystem. They represent the specific behaviour of the subsystem
that influences more than one interface. This so-called "linking behaviour" is also used to link the behaviour assigned to the interfaces.
Eu.ModSt.7318 | Info In addition, the respective possible number of FEs is determined by multiplicities.
Eu.ModSt. 1930 | Info The model view "Functional Partitioning" of a SUS is the basis for the model view "Functional Architecture" of a SUS. While the former, however, defines the absolute behaviour (the maximum possible number of FEs is

defined), the model view "Functional Architecture" also allows excerpted descriptions (Description of different configurations).

© EULYNX Partners

Page 35 of 120

Modelling Standard

ID Type

Requirements

Eu.ModSt.1451 | Info

Figure 1451 Model view "Functional Partitioning"

bad Subsystem Pant- Functiona Partitoning [F unctional Vi

SCHP- FunctionalViewpoint I

1]
j

SubsysiemFoint-FuncboralErttes |

-
T

[B A

Eu.ModSt.1647 | Info

Task (7a): creation of model view "Functional Entity" of a SUS

Based on the SUS-specific FEs defined in the model view "Functional Partitioning" of a SUS, the model view "Functional Entity" as shown in Figure 1644 is created for these FEs.

Eu.ModSt.7322 | Info

SUS-specific FEs represent control system functions such as "F_Control_Point" (see Figure 1644). They have executable SysML state machines and SysML block operations to describe behaviour. SysML state machines

enable the specification of finite discrete event dynamic behaviour. SysML block operations are used to perform logical or algebraic transformations.

Eu.ModSt.7463 | Info

The model view "Functional Entity" describes the behaviour or part of the behaviour of a SUS independent of technology.

© EULYNX Partners

Page 36 of 120

Modelling Standard

ID Type Requirements
Eu.ModSt.1644 | Info
Figure 1644 Model view "Functional Entity" of a SUS
ibd [Block] F_Control_Point [Functional Viewpeint - Subsystem Requirements - Functional Enlity]]
d10in_Required_Point_Position : 3tring d12out_Required_PM_Position : String
d11in_Observed_Ability_To_Move ; String
d13in_Observed_Movement_Failed | Boolean
d1din_Obsered_Point_Position : String
D18in_Con_Use_Redrnve : Boolean
d51in_EST_EfeS_State : Stang
Eu.ModSt. 1645 | Info Task (8a): creation of model view "Functional Architecture" of a SUS
Based on the model view "Functional Partitioning" of the SUS, the model view "Functional Architecture" is created.
Eu.ModSt. 7459 | Info The model view "Functional Architecture" as shown exemplarily in Figure 1646 describes the external visible stimulus-response behaviour of a SUS represented by a Logical Structural Entity (LSE) that is structured in a way
that
enables an interface centric specification approach as described in chapter 8.2.4. The behaviour of the SUS is divided into FEs, which communicate with each other via internal interfaces and with the environment via
external interfaces.
Eu.ModSt.7460 | Info The model view "Functional Architecture" describes the behaviour of a SUS independent of technology.

© EULYNX Partners

Page 37 of 120

Modelling Standard

ID

Type

Requirements

Eu.ModSt.1646

Info

Figure 1646 Model view "Functional Architecture" of a SUS

bl Port Murctonl Voapmre R - Nocton lechiecurs

S0P - Submpsion VDA D
S P Sty VDM _W
557 Submystoen SOP
Pl ; Do Doty idergiliar

Eu.ModSt.1654

Info

Task (9a): creation of model view "Technical Functional Architecture" of a SUS

Based on the model view "Functional Architecture" of the SUS, the model view "Technical Functional Architecture" is created at the Technical Viewpoint on abstraction level AL2. This model view is only created if technical

functional requirements are to be described in a model-based manner.

Eu.ModSt.7461

Info

The model view "Technical-Functional Architecture" of the SUS, as exemplified in Figure 1558, describes the externally visible stimulus-response behaviour of a SUS represented by one or more TSEs based on technical

requirements. The SUS is represented by a technical structural entity (TSE).

Eu.ModSt.7462

Info

The technology-independent behaviour described in the Functional Viewpoint in the form of a Functional Architecture through FEs is complemented or substituted by technology-dependent behaviour in the form of TFEs.
TFEs are coupled with each other, with already defined FEs or with the environment via external technical interfaces.

© EULYNX Partners

Page 38 of 120

Modelling Standard

ID

Type

Requirements

Eu.ModSt.1558

Info

Figure 1558 Model view "Technical Functional Architecture" of a SUS

Vo (W) Sy when Pt 4 Vi Pl VF [Tl Satwynipmieg Tt Funstonsl Arch i

H RIS Ty
Sulriy sleis Posst 4 Wirs PUl LIF
-

==
=
=

Eu.ModSt.1652

Info

Task (10a): creation of model view "Technical Functional Entity" of a SUS
Based on technical requirements, the model view "Technical Functional Entity" as shown in Figure 1578 s created at the Technical Viewpoint on abstraction level AL2.

Eu.ModSt.7464

Info

TFEs represent technology-dependent control system functions such as "F_Control_And_Observe_4W_PM" (see Figure 1578). As well as FEs, TFEs also have executable SysML state machines and SysML block operations to
describe behaviour. SysML state machines enable the specification of finite discrete event dynamic behaviour. SysML block operations are used to perform logical or algebraic transformations.

Eu.ModSt. 1578

Info

Figure 1578 Model view "Technical Functional Entity" of SUS
ibd [Block] F_Control_And Observe 4V PM [Technical Viewpoint - Subsystem Requirememts - Techmcal Functional Enitity

stechnical functional entitys
F_Control_And_Chserve 4W_PMW

d5Tin_EST_EfeS_State . String

D35in_Last_Target_Position © String
d19out_Ability To Maove PM : Stang
dilout_PM_Pesition - String
D250ut_Detection_Voltage : Boalean

d2%in_Mowe_Left_PM : Boolean
d22in_Maowe_Right_PM : Boolean

D26in_Dwee_Voltage Avarlable | Boolean
D24out_Drvva_Voltage_Right - Boolean

D27in_4W Paktern : String D23gut_Dwrive_Voltage_Left - Boolean
d2in_Required_Point_Pasition : String
Ddéin_Con_kctrve - Boolean

D20in_Con_Diwe_Capability : Boalean

Eu.ModsSt.341

Head

8.1.3.2 Engineering path SIUS

Eu.ModSt.1649

Info

Task (6b): creation of model view "Functional Architecture" of a SIUS
Starting from the model view "Functional Partitioning" of the involved SIUS, the engineering path continues with the generation of the further model views of the SIUS at the Functional Viewpoint at abstraction level AL2.

© EULYNX Partners

Page 39 of 120

Modelling Standard

ID Type Requirements
Eu.ModSt.7465 | Info First, the model view "Functional Architecture" of the SIUS as depicted in Figure 1648 is created. It defines the global behaviour of the application protocol. As described in chapter 8.2.4 the global behaviour is described by
connecting the local behavioural components referenced by a communication partner with the corresponding ones of the neighbour via communication channels.
Eu.ModSt.7466 | Info The description of the global behaviour of the application protocol is done by the internal structuring of the association block defined in model view "Functional Partitioning" of the involved SIUS. In this process, the
communication partners, which in turn reference the local behavioural parts of the protocol represented by FEs, are referenced in the form of SysML participant properties and connected via their interfaces with connectors.
Eu.ModSt.1648 | Info
Figure 1648 Model view "Functional Architecture" of a SIUS
b [ERock] SC1P - [Funciionsl Viewpont - Interdaca Reqursments - Functional Archéecture]]
| alogical ports
| SCIP : SCI_P_Subsystem_P :
|
|
I
|
|
I
|
|
|
|
I
|
|
I
Eu.ModSt.1641 | Info Task (7b): creation of model view "Information Flow" of a SIUS
Based on the defined interfaces in model view "Functional Architecture" of a SIUS the model view "Information Flow" is created. The model view "Information Flow" as shown in Figure 1567 describes the information
objects to be exchanged via an interface.
Eu.ModSt.7467 | Info The information objects are represented by SysML signals such as "Cd_Move_Point". These signals can in turn have typed attributes such as "CommandedPointPositionState" that represent parameters of the information
objects. For example, the attribute "CommandedPointPositionState" is typed with the enumeration "PointPositionControlableState" with the available values "Left" and "Right".
Eu.ModSt.7468 | Info The information objects are further refined into telegrams on AL3 of the AM MBSE. However, the telegrams are currently not yet implemented in a model-based way.

© EULYNX Partners

Page 40 of 120

Modelling Standard

ID Type

Requirements

Eu.ModSt.1567 | Info

Figure 1567 Model view "Information Flow" of a SIUS

bl [Package] SCIHP - informaticn Flows [Intedlace Requirements - Information Obgects] J

wvalueType (enumeratson]s
PointPositionControlabbe State

CommandedPointPositionS1ate

Lok
Rught

walueType (enurmesation s
PointPosition State

= Left.

ReporiedP oimPostionSiale

ReportedDegradedPointPositian

Fagft..
MeEndPoson..
UnrtandedPosition .

PointPositionDegraded State

DograskedRight .
Mot Desgraded.
MetApphcable

evalusType (enumeration s
Ability ToMove State

ReportedAbilityTolMovwe State

Wbl Tolowe _
UrableToblowe

Eu.ModSt.1642 | Info

Task (8b): creation of model view "Functional Entity" of a SIUS

After the information objects are defined, the model views "Functional Entity" are created for the FEs defined in the model view "Functional Partitioning" of a SIUS. These FEs such as "F_SCI_P_Report" (see Figure 1579)
represent the local behaviours of the RCP of the respective interface. They have executable SysML state machines and SysML block operations to describe behaviour. SysML state machines enable the specification of finite
discrete event dynamic behaviour. SysML block operations are used to perform logical or algebraic transformations.

Eu.ModSt.1579 | Info

Figure 1579 Model view "Functional Entity" of a SIUS

ibd [Block] F_SCI_F_Report [Functional Viewpoint - Iterface Reguirements - Functional Ent'rt:.r]l

d14in_Observed_Point_Position - Sting
D15in_Con_Observe_Ability_To_Move - Boolean
d17in_Observed_Degraded_Point_Position : String

d5lin_POI_Cennection_State : String

d11in_Obsered_Ability_To_Maove : Sting plinout - F_SC1_Specific

d13in_Observed_Movernent_Failed . Boolean PSout : SCI P 2

Eu.ModSt.2121 | Info

The following chapters describe general modelling rules (chapter 8.2) and the rules for creating the model views used to specify EULYNX SUS (chapter 8.3) and the ones used to define EULYNX SIUS (chapter 8.4). As the
model views "Functional Entity" and "Technical Functional Entity" are used for the specification of EULYNX SUS as well as for the specification of EULYNX SIUS they are described in the separate chapters 8.5 and 8.6.

Eu.ModSt.363 Head

8.2 Model views - General modelling rules

© EULYNX Partners

Page 41 of 120

Modelling Standard

Requirements

ID Type

Eu.ModSt.58 Info

model simulation.

The system requirements of a specification model (abstraction levels AL2 Subsystem Requirements and AL2 Interface Requirements) of the AM MBSE must be executable and provide a graphical user interface enabling

Eu.ModSt.60 Info

Before delivering derived specifications to the signalling system supplier, quality assurance must be completed by carrying out the verification and validation activities defined in the MBSE process.

Eu.ModSt.63 Info

Links to model elements embedded blue-coloured in model descriptions formulated in prose must not be put in quotation marks.

Eu.ModSt.1160 | Info

The related information, which is required to convoy the complete meaning of a model element, must be documented for each used model element in the modelling tool (e.g. Properties ->Text->Description).

Eu.ModSt.1161 | Info

Unless there are project-specific commitments, stereotypes such as <<block>>, <<ProxiPort>> and so forth may be shown on the diagrams if the modeller regards it as beneficial.

Eu.ModSt.1162 | Info

Unless there are project-specific commitments, data types such as Boolean, Integer, PulsedIn, PulsedOut and so forth may be shown on the diagrams if the modeller regards it as beneficial.

Eu.ModSt.1239 | Info

Example:

Shapes and colours of model elements presented in this modelling standard can be adapted according to project-specific commitments, unless explicitly required.

An actor basically is depicted as a stickman. It might be project-specifically determined to use the image of a cube if the actor represents a system and a "stickman" if the actor represents a person.

Eu.ModSt.1456 | Info

Project-specific requirements transcending the requirements of Modelling Standard are to be documented separately.

Eu.ModSt.7847 | Info

As shown in principle in Figure 7847, the AM MBSE is to be represented by the package structure in the modelling tool.

Eu.ModSt.7844 | Info

Figure 7844 Representation of the AM MBSE through the package structure

AM MBSE: Instance System Element

] +5Subsystém Paint - Functional F‘aﬂiti.::ming

¥ +Subsystem Peint - General Infos and As.':umptmns
]

| +Subsystem Point - Interfaces '
+Subsystem Point - Logical Viewpoint *r
¥ +Subsystem Point - Technical Viewpoint

+

ﬁFum:tinnal Viewpoint | | ogical Viewpoint | Technical Viewpoint [CSP
(i
-\ L II
= * i
AL1 S i ‘ 'g.
e " |r ﬁ
: : i
'\\ ' :
AL2 = ' E
- TES o 5)
Py — - LS 1
= b i [
s e P
> ¥ s » v ‘\ - '
- +Functiegal requirements specification)
=[] =SubsystémPoint - Functional Viewpoint |
+ +Definition of time values :
. #-3 +5ubsystem Point -‘Functlcnal Architefture
P"‘_’:"ag‘? structure in + +5Subsystem Point - Functional C c-nte:#t
Windchill Modeler + +Subsystem Point - Functional Entitieg

Eu.ModSt.2027 | Info

Viewpoint, abstraction level and model view of the AM MBSE name are made evident in the header of the diagram representing a certain model view.

Eu.ModSt.2028 | Info Examples:
granularity of abstraction level AL1 (Subsystem Definition).
¢ The view “Functional Architecture” depicted in Figure 2029 describing a certain aspect of system element Subsystem Light Signal by a SysML internal block diagram (ibd) belongs to the “Functional Viewpoint” and has the

granularity of abstraction level AL2 (Subsystem Requirements).

¢ The view “Functional Context” depicted in Figure 2029 describing a certain aspect of system element Subsystem Light Signal by a SysML use case diagram (uc) belongs to the “Functional Viewpoint” and has the

© EULYNX Partners

Page 42 of 120

Modelling Standard

ID Type

Requirements

Eu.ModSt.2029 | Info

Figure 2029 Structure of the diagram headings

Diagram header

. uc [Package] SubsystemLight Signal - Functional Context[Functional Viewpocint - Subsystem Definition - Operation]

System element View Viewpoint bstraction level
AM MBSE: Instance System Element
*‘um:tinnrl Viewpoi "ﬂgical Viewpoint | Technical Viewpoint |CSP

W
AL1 —4 ’E
e s
-k
ALI\% - g
il N Il \\

System Elemem Viewpoint \hsuactiun IewN‘w
7 = =

N
ibd [Block] Subsystem Light Signal [Functiona Viewpoint - Subsystem Requirements - Functional Archi!eciure]J

Eu.ModSt.7845 | Info

As shown in Figure 7846 as an example, the packages in which the respective model elements are stored are to be displayed on the diagrams.

© EULYNX Partners

Page 43 of 120

Modelling Standard

ID Type Requirements
Eu.ModSt.7846 | Info
Figure 7846 Mapping the package structure onto the diagrams
L Fitenid i oasiMaradi
+Defation of lime valuet
+ Subiyiterm Paint - Funcisanal Arghatectung "
@ -emombms Package structurein
B <ScpeamPort - Fncinsis Windchill Modeler
3 Pyl
. :'I-F_C:hu-'-!_b{qrad!d_%lr:_?’c:—t-an
I: __] :F_Ca>ef-l_~?-€n;|_9c rl_Position
W JRequintment]
E +Subbyttem Point -Fur-:lc\qt.pqﬂd.c'\.ng .
fA =[Backage] Subsystem Poiib - Functional Pastitioninu[Functional Viewpoint - Subsysbern Requirernents]
-:‘E-Jbi_.:lel:T Pgink - General Infos :n:I‘J-tsuﬂ'\-l:ll--c S '
=Subsystern Poink - Interfaces B
-I:.'ul:-:_.s.lr!m'?-:-r't- Logical Yiewpomt
-Fuhi;.:lerw I-.'-r'l:- Techmical Viewpoirg : :
e, N (—
T 1 "-.__ dpchibeciune
sl 1 “d 4
e Yo
v \ Diagram
[———————— Lr-1‘-e|':.l
u:ﬂ%h;' o -
..a—tﬂt:— B 9
T -
 Oomare pnaty_To s T *

Eu.ModSt. 7707 | Info In the following subsections 8.2.1, 8.2.2 and 8.2.3, the binding of requirements, the modelling pattern for interlocking systems supporting the EULYNX methodology and the basic structural model elements used are
introduced.

Eu.ModSt.7065 | Head | 8.2.1 Binding nature of the requirements and their structuring

Eu.ModSt.2030 | Info The SUS and SIUS SysML specification models are stored in the repository of the modelling tool. Relevant artefacts of them are depicted in a traceable manner as surrogates in the requirement specification documents in
the form of atomic referenceable functional SUS or SUIS requirements.

Eu.ModSt.7060 | Info Each of these atomised requirements is assigned a liability in the form of an object type. A distinction is made between the object types "Req", "Def", "Info" and "Head".

Eu.ModSt.7061 | Info ¢ "Req": This denotes a mandatory requirement.

Eu.ModSt.7062 | Info » "Def": This denotes referenceable model elements that are used in the model-based creation of requirements

Eu.ModSt.7063 | Info ¢ "Info": This denotes additional information to help understand the specification. These objects do not specify any additional requirements.

Eu.ModSt.7064 | Info ¢ "Head": This denotes chapter headings.

Eu.ModSt.7937 | Info Please note: State machines or several state machines linked together in a Functional Architecture define the totality of all functional requirements of an SUS or an SIUS in a coherent and consistent manner. State
diagrams of a corresponding state machine are marked with the object type “Req”. For the later design and implementation, it is not the description language SysML that is binding, but the domain-specific meaning
expressed by it. The specified behaviour can be converted into a vendor specific language but must retain the domain specific meaning describing the functional requirements. The specific model elements are additionally
specified and defined by object type “"Def” to allow for traceability to supplier designs or test cases. The compliance of products to the specifications must be demonstrated by testing against EULYNX test cases, which are
derived from the functionality specified by the models.

Eu.ModSt.7896 | Info Please note: The bindings assigned to each model view in this document can be adjusted on a project-specific basis. Thus, the bindings assigned in the specifications always apply.

© EULYNX Partners

Page 44 of 120

Modelling Standard

ID Type Requirements
Eu.ModSt.2031 | Info A functional requirement consists of the respective SysML model element, for instance a SysML diagram, and if necessary, an additional extension of it.
Eu.ModSt.2032 | Info For this reason, functional requirements have two attributes "Requirement Part 1" and "Requirement Part 2", which are shown in adjacent columns (see Figure 2).
Eu.ModSt.2033 | Info In "Requirement Part 1" the respective SysML model element is listed and in "Requirement Part 2" the corresponding extension is shown. Column 'Type' defines the bindingness of the requirement and applies normally both
to "Requirement Part 1" and "Requirement Part 2".
Eu.ModSt.2034 | Info In the case of requirements with a binding character "Req", in which the "Requirement Part 2" is provided with the heading "Information”, the defined binding character "Req" only applies to "Requirement Part 1".
Eu.ModSt.2035 | Info
Figure 2: "Requirement Part 1" and "Requirement Part 2" as shown in the requirement specifications.
ID Type Requirement Part 1 Requirement Part 2
Eu.LS.4687 Req Cd_Indicate_Signal_Aspect Command (Cd) from the Subsystem
- Electronic Interlocking to the
Subsystem - Light Signal to indicate
the transmitted Signal Aspect.
Eu.ModSt.2036 | Info Just this partition of requirements is applied throughout the entire requirement specification document regardless of whether a requirement has its origins in the SUS or SIUS model or it is for example a text-based
nonfunctional requirement manually added.
Eu.ModSt.7704 | Head | 8.2.2 Modelling Pattern for interlocking systems
Eu.ModSt.220 | Info Assuming that the stimulus-response behaviour of an overall interlocking system is immanently allocated to the infrastructure elements and encapsulated in each, the vertical slices of a Modelling Pattern for an overall
interlocking system as depicted in Figure 226, may be derived in form of a generic topological abstraction of the signalling infrastructure, i.e. following the geographical principle.
Eu.ModSt.221 | Info This assumption has already been verified by the implementation of the all-relay interlocking in which the logic of routes is designed following the geographical principle (e.g. the Sp DRS 60 interlocking of Siemens AG as
described in [18]).
Eu.ModSt.222 | Info The geographical principle considers the interconnection of distinct pieces of functionality, immanently encapsulated in the infrastructure elements (ISE), in the form of modules according to the signal layout plan
(topological abstraction of infrastructure).
Eu.ModSt.223 | Info Hence, the functional structure within each vertical slice of the Modelling Pattern for an overall interlocking system may be derived from ISE specific behaviour and interconnected according to the signal layout plan (see
Figure 226).
Eu.ModSt.224 | Info Each of the vertical slices, i.e. each OE, represents the stimulus-response behaviour of a corresponding ISE.
Eu.ModSt.1237 | Info The goal is to define the stimulus-response behaviour assigned to a vertical slice in a way that it fits into all valid variants of signal layout plans.
Eu.ModSt.1163 | Info The OEs communicate as appropriate with one another, i.e. they exchange information.
Eu.ModSt.1164 | Info Each information is sent out by a sender and received by one or multiple receivers. One of these is an OE; the other is an adjacent OE.
Eu.ModSt.1165 | Info During its transmission, an information passes through a communication channel, which is the path through which the information travels from the sender to the receiver. This communication channel is assigned to the
connection domain (CD).
Eu.ModSt.1166 | Info If the information is given directly by the sender to the receiver a communication channel may be abstracted without specifying any behaviour.
Eu.ModSt.1167 | Info In other cases, the communication channel is significant because in it information may be delayed, lost, transformed into a format more convenient for the receiver or ordered in time. In these cases, the behaviour of the

communication channel is to be modelled explicitly.

© EULYNX Partners

Page 45 of 120

Modelling Standard

ID

Type

Requirements

Eu.ModSt.226

Info

Figure 226 vertical slices of the Modelling Pattern for interlocking systems
Sta. B

G AN |
S-m P 5 M—w2 <4=— Fip

ISE Interlocking system boundary

Gl 1.2 Gl1.2

4 1 | i IR g W

_ '.) D-iVeq !
N1 > /j?(B

Topological abstraction of infrastructure

+|to and from

Topography of infrastructure Sta. C

v v

Stimulus-response behaviour assigned to a certain operational entity

P1 2 F
} - B

I_ - P

Stimulus-response behaviour assigned to the connection domain
(CD) between the operational entities

Vertical Slices

ISE: Infrastructure Element

Eu.ModSt.227

Info

The layers of a Modelling Pattern for an overall interlocking system may be derived from architectural requirements based on the present architecture of an interlocking system [12] (see Figure 228):
e Command Control Layer (acronym: C),
o Safety Layer (acronym: S),
¢ Field Layer (acronym: F).

Eu.ModSt.1168

Info

The OEs exchange information between the different architectural layers as appropriate.

Eu.ModSt.1169

Info

Each information has a sender and one or multiple receivers. One of these is a certain architectural layer of an OE; the other is the underlying or overlying architectural layer of this OE.

Eu.ModSt.1170

Info

In the same way as between the vertical slices described above each information passes through a communication channel assigned to the CD. It connects sender and receiver and may have a behaviour or not.

© EULYNX Partners

Page 46 of 120

Modelling Standard

ID Type Requirements
Eu.ModSt.228 | Info
Figure 228 Architectural layers of the Modelling Pattern for interlocking systems
Stimulus-response behaviour assigned to a certain architectural layer
i
[
i Command and
: Control Layer
' E g (C)
w 2 ¢
P& on domain | e g
> 0 E Connection domain | /S Sl - .
w = =]
— a3 ’;
© o g Safety Layer ’
=3 E:‘- : .S' +,
53T (S) ,’
-3 F
£33 v
S o Z Connection domain | SRR /ZL ______________ <«
2gs , 2
& o . f" f.f
. Field Layer ; ;
! s
] F '
| (F) ; J
A 2 ¢ i
’ I
Stimulus-response behaviour assigned to the connection domain
between the architectural layers (e.g., communication protocol)
Eu.ModSt.231 | Info The Modelling Pattern for interlocking systems, as depicted in principle in Figure 230, consists of vertical slices representing the required stimulus-response behaviour of corresponding OEs such as "Light Signal" or "Point"
and adjacent vertical slices in which the behaviour of the CD is to be specified.
Eu.ModSt.1172 | Info At the architectural layers C, S and F, the stimulus-response behaviour of the operational entities is put into the perspective of architectural requirements. The CD is to be specified at the underlying or overlying layer of the
architectural layer S, respectively.
Eu.ModSt.232 | Info Each cell of the so-defined matrix represents a piece of required stimulus-response behaviour of the corresponding OE, put into the perspective of architectural requirements inherent in the respective architectural layer.
Eu.ModSt. 1292 | Info This aforementioned behaviour is described in each cell by a FE or a number of FEs that are interconnected in a Functional Architecture.
Eu.ModSt.7705 | Info A Functional Architecture divides the behaviour into Functional Entities, which communicate with each other via internal interfaces and with the environment via external interfaces.
Eu.ModSt. 1294 | Info A distinction is made between cells containing the behaviour assigned to OEs and those containing the behaviour of the CD.
Eu.ModSt. 1293 | Info The behaviour assigned to the CD specifies the communication channel (i.e. the global behaviour of the application protocol RCP) between cells containing the behaviour of adjacent OEs (see chapter 8.2.4 Interface centric
specification).
Eu.ModSt.7706 | Info Channels without behaviour are represented by SysML connectors that connect the ports of the respective FEs.

© EULYNX Partners

Page 47 of 120

Modelling Standard

ID Type Requirements

Eu.ModSt.230 | Info
Figure 230 Principle of a Modelling Pattern for interlocking systems (simplified)

EOR/ p LS EOR/ Adjacent
sor |<P cb Dl sor [CP]| s

C |

cD |

CcD

i |
B Behaviour assigned to operational entities
| }== | Behaviour assigned to the CD (channel with behaviour)

e (CH@NNEl without behaviour

CD: Connection domain
Examples of operational entities (OE):
SOR: Start of route, EOR: End of route, LS: Light signal, P: Point

Eu.ModSt.2091 | Head | 8.2.3 Introduction of the basic structural model elements

Eu.ModSt.2092 | Head | 8.2.3.1 Logical Structural Entity (LSE)

Eu.ModSt.2093 | Info A Logical Structural Entity (block in turquoise, stereotyped as <<logical structural entity>>) represents a system element from a logical point of view. It encapsulates either one or more LSEs interconnected in the form of a
Logical Architecture or one or more FEs interconnected in the form of a Functional Architecture.

Eu.ModSt.1243 | Info LSEs representing architectural entities are applied in order to structure a SUS according to architectural aspects aiming at a logical system architecture solution independent from any technological constraints. This kind of
partitioning results in a glass box view of the SUS.

Eu.ModSt.355 | Info In a glass box specification the SUS is described as a collection of subsystems.

Eu.ModSt.205 | Info LSEs that are not required to be further decomposed by other LSEs are referred to as atomic LSEs.

Eu.ModSt.1101 | Info The stimulus-response behaviour of a non-atomic LSE is represented by the interactions between its decomposed subcomponents and the interactions of those subcomponents with the interfaces of the SUS. These
interactions are described by use case scenarios.

Eu.ModSt.203 | Info Each atomic LSE encapsulates a piece of the "total" external visible stimulus-response behaviour of a SUS. This behaviour may be modularised by Functional Entities (black box view of a SUS).

Eu.ModSt.354 | Info In a black box specification only the black box behaviour of the system to be specified is considered, i.e. only the external properties of the system are defined (externally visible input/output behaviour).

© EULYNX Partners Page 48 of 120

Modelling Standard

ID Type

Requirements

Eu.ModSt.2094 | Info

Figure 9 Logical Structural Entity
«block»
«logical structural entity»
LSE

Eu.ModSt.2095 | Head

8.2.3.2 Functional Entity (FE)

Eu.ModSt.2096 | Info

A functional entity (green block, stereotyped with <<functional entity>>) encapsulates a certain portion of technology-independent system behaviour of a system element.

Eu.ModSt.1247 | Info

FEs representing behavioural entities are applied to modularise the stimulus-response behaviour of an atomic LSE aiming at reusability and mastering the complexity. This kind of partitioning does not have any impact on
system architectural aspects i.e. the atomic LSE remains a black box. A FE is not further decomposable.

Eu.ModSt.1102 | Info

The syntactic interface of a FE defines primarily the signatures of the in ports and the out ports and as appropriate the signatures of block properties and block operations. The semantic interface specifies the stimulus-
response behaviour, i.e. the chronological order of stimuli and responses using a state machine. The syntactic interface as well as the semantic interface of a FE are explained in detail in the chapters 8.5 and 8.6.

Eu.ModSt.2097 | Info

A functional entity additionally stereotyped with <<assumption>>represents a set of assumptions which are not functional requirements. Assumptions are mainly used to restrict the environment of a FE.

Eu.ModSt.2098 | Info

Figure 10 Functional Entity

Eu.ModSt.2099 | Head

8.2.3.3 Environmental Structural Entity (ESE)

Eu.ModSt.2100 | Info

In the environment of a SUS, there may be other system elements belonging to the same overall system (subsystems) with which the SUS in question has a communication relationship. These system elements are
described by logical structural entities. However, the SUS can also have a relationship with system elements that are outside the associated overall system. These system elements are described by environmental structural
entities (grey block, stereotyped with <<environmental structural entity>>).

Eu.ModSt.2101 | Info

Figure 11 Environmental Structural Entity

«block»
«environmental structural entity»
ESE

Eu.ModSt.2102 | Head

8.2.3.4 Technical Structural Entity (TSE) or Technical Functional Entity (TFE)

Eu.ModSt.2103 | Info

Technical Structural Entity:
A Technical Structural Entity (yellow-coloured SysML block stereotyped with <<technical structural entity>>) encapsulates one or more TSEs in the form of a Technical Architecture or one or more TFEs interconnected in
the form of a Technical Functional Architecture based on technical requirements (<<hardware>>: TSE representing a hardware artefact, <<software>>: TSE representing a software artefact).

Eu.ModSt.2104 | Info

Technical Functional Entity:
A Technical Functional Entity (yellow-coloured SysML block stereotyped with <<technical functional entity>>) represents a certain piece of technology-dependent behaviour based on technical requirements in a Technical
Functional Architecture supplementing or substituting the technology-independent behaviour defined by FEs.

© EULYNX Partners

Page 49 of 120

Modelling Standard

ID Type Requirements

Eu.ModSt.2105 | Info Figure 12 Technical Structural Entity or Technical Functional Entity

ablock»
«technical structural entity»
«hardware»
«software»
«technicalfunctional entity»

TSE or TFE

Eu.ModSt.2106 | Head | 8.2.3.5 Information objects

Eu.ModSt.2107 | Info Information objects are the objects that are exchanged between the respective communication partners via a communication relationship. They are formed from signals and values of the signals, the so-called attributes and
are made available or received at ports.

Eu.ModSt.2108 | Info Ports are represented by small squares at the edge of a Functional Entity and represent the connections to the interfaces to other internal or external Functional Entities to which a communication relationship exists, or to
external interfaces. The port also indicates the arbitrary port name and interface type in the format "port name:interface type". Communication relationships between functional entities are assigned a reading direction. In
the case of ports, this is represented by the interface type being shown in conjugated form, i.e. by the symbol "~", on one side of the communication relationship.

Eu.ModSt.2109 | Head | 8.2.4 Interface centric specification

Eu.ModSt.2112 | Info By an interface centric approach, it is understood that the external visible stimulus-response behaviour (usage behaviour) of a SUS is largely described by the behaviours related to its interfaces. These behaviours are linked
together and supplemented by behaviour relevant for more than one interface by means of linking behaviour.

Eu.ModSt.2113 | Info As depicted in Figure 2117, the models of the protocol stacks assigned to the communication interfaces are downscaled to the Process Data Interface protocols (PDI) defining the global PDI behaviours of the application
layers (e.g., SCI-AB PDI).

Eu.ModSt.2114 | Info Global behaviour specifies the dependencies between the local PDI behaviours of the communication partners, that is the exchange of Process Data Units (PDU) between them in a chronological order.

Eu.ModSt.2115 | Info The local PDI behaviours represent the behaviours of the communicating systems related to a certain interface.

Eu.ModSt.2116 | Info The relation between local PDI behaviour and global PDI behaviour can be illustrated by a telephone call. The dialling is a local PDI behaviour at the initiator side, the ringing the associated local PDI behaviour at the
partner side. Only the global PDI behaviour defines that the dialling must precede the ringing (i.e., the chronological order).

Eu.ModSt.2117 | Info
Figure 2117 Global PDI behaviour

Global PDI behaviour

T Application layer) AL)
= SCI-XX.PDI ==l .
a Safety, retransmission and redundancy T
o} layer = RaSTA — SCI-AB -
L] [} (] []
Transport layer PDU exchange
= UDP /‘ S \
i / SCI-AB PDI \
- Network layer 7 \\
& / \
;g? Data link layer Lrucal PDI E{ehaviour I_.Un'.‘;al PDI b.ehavic-ur
= (i.e., behaviour related (i.e., behaviour related
::] o8 1 -
& p il Ervae to lnt}erface SCI-AB) on to mtgrface SCI-AB) on
l the side of system B the side of system A

© EULYNX Partners Page 50 of 120

Modelling Standard

ID Type Requirements
Eu.ModSt.2118 | Info As the local PDI behaviours represent the interface behaviours of the communicating systems they may be specified in the model of the PDI.
Eu.ModSt.2119 | Info As depicted in Figure 2120, in the model of a SUS such as System A, these local PDI behaviours are referenced and linked together (Linking Logic).
Eu.ModSt.2120 | Info
Figure 2120 Principle of interface centric specification
System B Ll 0 System A 0 System C
T e e ;
! [
Ll
l:__l ? 12 P I]_ D_‘;I [;l_
e Pee—
I I
i I
1 i
I
=<reference>= i =<reference== <<reference>= | =<reference==
| |
3]
L 2 L
- ° e
SCl-AB SCI-AC
= r
C L] {]]
SCI-AB PDI SCI-AC PDI
© System behaviour @ Linking Logic
@ Local PDI behaviour © Global PDI behaviour
Eu.ModSt.7952 | Head | 8.2.5 Functional packaches
Eu.ModSt.7953 | Info The EULYNX specifications are to be divided into functional packages in the requirements management tool used. This is intended to enable Infrastructure Managers (IM) involved to select requirements in a targeted
manner and thus apply the specifications to the desired capabilities of their products.
Eu.ModSt.7954 | Info There are two types of packages that relate to product capabilities:
¢ '‘Basic packages’, i.e. one or more packes, at least one of them must be implemented. It is allowed to combine and implement more than one ‘basic package’ in a product.
¢ ‘Optional package’, i.e. one or more packages that can be optionally implemented in addition to one or more basic packages.
Eu.ModSt.7955 | Info For the evaluation if a requirement is valid or not depending on the selected functional packages of an IM, the basic packages have an "or" relation and optional packages have an "and" relation to everything else. I.e. from
mathematical point of view: ("Basic P1" or "Basic P2" or "Basic Pn") and "Option P1".
Eu.ModSt.7956 | Info The functional packages are to be allocated to the requirements in the requirements management tool used. The practical implementation of the allocation depends on the capabilities of the tool.
Eu.ModSt.7957 | Info The SysML specification model must be structured in such a way that the required functional packages can be separated from the overall functionality in order to enable clear allocation as described above.
Eu.ModSt.7958 | Info For example, functional packages can be formed by encapsulating certain behaviours in functional entities, which are then used or not in the corresponding functional architecture as required.
Eu.ModSt.1509 | Head | 8.3 Model views used to specify EULYNX subsystems
Eu.ModSt.2124 | Info | Model view "Functional Context": Use case Diagram (uc)
The model view "Functional Context" defines the services to be provided by the SUS in the form of use cases. Relationships are used to represent which actors interact with which SUS use case.
Eu.ModSt.2125 | Info | Model view "Use case scenario”: Sequence Diagram (sd)
The model view "Use case scenario" describes the behaviour of the use cases defined in the model view "Functional Context" at the upper level of abstraction by means of one or more use case scenarios.
Eu.ModSt.2123 | Info

Model view "Logical Context": Block Definition Diagram (bdd)
The model view "Logical Context" describes at the top level

¢ the system/subsystem under specification (SUS),

¢ the actors in the environment interacting with the SUS and their quantity structure (multiplicities)
as well as the logical interfaces between the SUS and the actors.

© EULYNX Partners

Page 51 of 120

Modelling Standard

ID

Type

Requirements

Eu.ModSt.7708

Info

Model view "Functional Partitioning": Block Definition Diagram (bdd)
The model view "Functional Partitioning" describes the refinement of the SUS by means of the FEs defined in the SIUS model view "Functional Partitioning", which represent the local behaviours of the PDI, as well as the
FEs specific to the SUS (linking behaviour according to chapter 8.2.4).

Eu.ModSt.2126

Info

Model view "Functional Architecture”: Internal Block Diagram (ibd)
The model view "Functional Architecture" refines or completes the behaviour of an SUS defined in the model view "Use case scenarios". The behaviour of the SUS is divided into Functional Entities" (FE), which communicate
with each other via internal interfaces and with the environment via external interfaces. The FEs are defined in model view "Functional Partitioning".

Eu.ModSt.7720

Info

Model view "Technical Functional Architecture": Internal Block Diagram (ibd)

The model view "Technical Functional Architecture" supplements the behaviour described in the model view "Functional Architecture", which is independent of technology, with behavioural components derived from
technical requirements. Either the entire behaviour can be described in a technical context or a mixture of functional and technical aspects.

Eu.ModSt.2127

Info

Model views "Functional Entity" and "Technical Functional Entity": Internal Block Diagram (ibd) and State Machine (stm)

The model view "Functional Entity" encapsulates a subset of technology-independent functional requirements and the model view "Technical Functional Entity" a subset of technology-dependent functional requirements of a
SUS in the form of a function module. It delimits the function module from its environment and defines the inputs and outputs. In the discrete case, the behaviour of the FE is described by means of state machines. In this,
the binding functional requirements are specified in the form of state transitions. Both model views are described in the separate chapters 8.5 and 8.6.

Eu.ModSt.2128

Info

Figure 2129 shows the engineering path of the model views used to specify a SUS considering the Functional Viewpoint, the Logical Viewpoint and the Technical Viewpoint. It describes the context of the model views, with
the arrows indicating which model views are developed from which. During the development of the model, the model views "Functional Context" (the Use Cases), "Use case scenarios" and "Logical Context" are created.
These model views form the basis for the description of the model views "Functional Partitioning"”, "Functional Architecture" and "Functional Entity". For the creation of the model view "Functional Partitioning", the FEs
defined in the model view "Functional Partitioning" of the SIUS are required (b: see Figure 2244 in chapter 8.4). In case technical requirements are to be considered, the model views "Technical Functional Architecture"
and "Technical Functional Entity" are created based on the model view "Functional Architecture".

Eu.ModSt.2129

Info

Figure 2129 Engineering path to specify a EULYNX subsystem

AM MBSE: Engineering path SUS
Functional Viewpoint

Logical Viewpoint | Technical Viewpoint | CSP

Logical Context (Block definition diagram)

¥

AL1|¢

_=:l-
_, .

Use case scenario (Sequence diagram)

@
. =Engineering path SIUS

Functional Context (Use case diagram)

Data
RAMS and Security

TFE {Intemal block diagram)

ﬂ'-
- .

1
' (b) ;

- _'._ 1

,-l'
e} LS
Technical Functional Architecture *
(Intemal block diagram)

=

———
s

= E s

- Behaviour of TFE
{e.g., State machine diagram)

s = =

=
e
Funcl.iunalmhitecl.um
_(Intemal block diagram)

EEE

-

FE (Intemal block diagrami '

AL2

o =

“Functional Partitioning

3 . Gl
Behaviour of FE 4 (Block definition diagram)

{e.g., State machine diagram)

-
-

- e
T e - =

Eu.ModSt.3550

Head

8.3.1 Model View "Functional Context" of a SUS (AL1) - Description

Eu.ModSt.3495

Info

The model view "Functional Context" as shown in Figure 3496 defines the services to be provided by the SUS in the form of use cases. On one or more SysML use case diagrams all subsystem use cases and their
relationships to the SUS environment and between the subsystem use cases themselves are depicted.

© EULYNX Partners

Page 52 of 120

Modelling Standard

ID Type Requirements
Eu.ModSt.3497 | Info In the use case diagrams, the boundary (2) of the SUS (1) is shown as a frame with a dotted line.
Eu.ModSt.3498 | Info The use cases of the SUS are shown as ellipses within the frame and have the name of the respective use case (3).
Eu.ModSt.3499 | Info A use case describes a service a SUS provides to its environment and is specified by one or more interaction scenarios (model view "Use case scenario").
Eu.ModSt.3500 | Info Use cases are connected by interaction connectors (7) to those actors in the SUS environment with whom they interact. An actor may represent another system (5) or a person (6).
Eu.ModSt.3501 | Info Use cases may be connected to each other through include relationships (4), which are represented by arrows with a dashed line stereotyped with <<include>>. Such a relationship indicates that the interaction scenarios
of the use case at the arrowhead are included in the use case at the other end of the arrow. These included use cases encapsulate services that occur more than once, for example, and can also be included in other use
cases.
Eu.ModSt.3496 | Info
Figure 3496 Example of SUS model view "Functional Context"
uc [Package] Subsystem Light Signal - Functional Context [Functional Viewpoint - Subsystem Definition - Initialisation]
B Grboerin e _. e o TG T TR TS Imem ™ n
F_ELES‘_I{_StELﬁ Light Signal, ® I
| |
= N6 |
(5 |
| @
[
~
Subsystem- N |
Electronic . I
Interocking [:
> gincludes |
N,
| \. |
| |
t |
| |
[|
[|
|
| Train driver
I |
l '
1 |
Subsystem - | |
Maintenance | |
and Data |
Management l |
|
| |
|
1 |
| |
L SRR |
Eu.ModSt.7711 | Head | 8.3.2 Model View ""Functional Context" of a SUS (AL1) - Modelling rules
Eu.ModSt.7713 | Head | 8.3.2.1 SysML Diagram

© EULYNX Partners

Page 53 of 120

Modelling Standard

ID Type Requirements
Eu.ModSt.7715 | Info UseCase diagram (uc): depicts the model view "Functional Context" (one or more use case diagrams classified by domain motivated use case groups such as Start-up, Operation, Maintenance and so on).
Eu.ModSt.7716 | Info Name of the Diagram:

uc/Package]<><System Name><>-<>Functional Context<>[Functional Viewpoint<>-<>Subsystem Definition<>-<><Use case group><>DiaNo].
Eu.ModSt.7717 | Info Example:
uc[Package] Subsystem Light signal - Functional Context [Functional Viewpoint - Subsystem Definition - Initialization]
Eu.ModSt.1197 | Info <Use case group> := <Main use case group><>-<><Sub use case group>
Eu.ModSt.1949 | Info <Main use case group> := Broader term of the domain motivated group of services defined on the use case diagram
Eu.ModSt.1950 | Info <Sub use case group> := Broader term of the subdomain motivated group of services defined on the use case diagram
Eu.ModSt.1199 | Info Examples:
Operation
Operation - Direction
Eu.ModSt.1198 | Info <DiaNo> := Number of use case diagram (Natural number starting with 1); optional to use
Eu.ModSt.1200 | Info <Name of Frame Box> := <System block signature>
Eu.ModSt.1201 | Info <Name of use case> := <UC designator>:<><Service to be described>
Eu.ModSt.1952 | Info <UC designator> := <UC type>UC<DiaNo of uc>.<UCNo>
Eu.ModSt.1763 | Info <UC type> := <Abbr. System type>
Eu.ModSt.1202 | Info <UCNo> := Number of UseCase (Natural number).
Eu.ModSt.1203 | Info <Service to be described> := The name of the service required by the system environment.
Eu.ModSt.1204 | Info Example:
LS_UC1.4: Establish initial state of outputs
Eu.ModSt.1205 | Info <Name of UseCase> (generic UseCase) := <Gen UC designator>:<><Service to be described>
Eu.ModSt.1953 | Info <Gen UC designator> := <Gen UC type>UC<DiaNo of uc>.<UCNo>
Eu.ModSt.1951 | Info <Gen UC type> := Gen | <Abbr. System group>
Eu.ModSt.1955 | Info <Abbr. System group> := Freely selectable designator such as EfeS (EULYNX field element system) or AdjS (adjacent system)
Eu.ModSt.1206 | Info Example:
EfeSUC1.2: Establish PDI connection
GenUC1.4: Establish PDI connection
Eu.ModSt.728 | Head | 8.3.2.2 Model elements
Eu.ModSt.926 | Info The model elements basically used to describe the model view "Functional Context" are depicted in Figure 746.

© EULYNX Partners

Page 54 of 120

Modelling Standard

ID Type Requirements

Eu.ModSt.746 | Info
Figure 746 Basically used model elements of model view "Functional Context"

uc <Diagramheading= Frame Box

Interaction | <System block signature= !
relationship

Q

Generalisation
relationship

UseCase=

|
|
|
I =Name of
|
|
<Actor name:= |

Include
relationship

I winclude»
<Name of

(specialsed)
UseCase =
UseCase image

UseCase=

|
|
|
|
| <Name of (included)
|
|
|

Eu.ModSt.729 | Info Frame Box: Represents the boundary of the SUS the use cases are allocated to.

Eu.ModSt.731 | Info UseCase image: Depicts a UseCase on the use case diagram.

Eu.ModSt.1714 | Info It may be project-specifically determined that for each use case one constraint may be added for each of the following definitions:
e the Purpose,

e the Primary Actor and

e the Secondary Actor.

Eu.ModSt.1715 | Info It may be project-specifically determined that the purpose of the UseCase is to be written in accordance with the following pattern:
This UseCase describes the <><UseCase Action><>of<><UseCase Object><>by<><UC Actor/s><><to do/ for doing><><summary of UseCase content>.
<Optional free text description to add details about UseCase content>.

Eu.ModSt.1709 | Info Actor: As stated earlier, an actor specifies a role played by user or any other system that interacts with the system. Cockburn [22] distinguishes between primary and secondary actors.

Eu.ModSt.1710 | Info Primary Actor: The primary actor of a use case is the stakeholder that calls on the system to deliver one of its services. It has a goal with respect to the system — one that can be satisfied by its operation. The primary
actor is often, but not always, the actor who triggers the use case.

Eu.ModSt.1711 | Info Secondary Actor: The secondary actor of a use case is a stakeholder that the system needs assistance from to achieve the primary actor’s goal.

Eu.ModSt.1712 | Info In other words, secondary actors may or may not have goals that they expect to be satisfied by the use case, the primary actor always has a goal, and the use case exists to satisfy the primary actor.

Eu.ModSt.744 | Info Interaction relationship: Connects the actors participating in the system use cases to the use case images (see Figure 746).

Eu.ModSt.745 | Info The interaction relationship is an abstract representation of the exchange of messages temporally ordered (information flow from and to the system) within the scope of the corresponding SUS use case.

Eu.ModSt.1713 | Info It may be project-specifically determined that only the primary actors participating in the SUS use cases are connected to the use case images. Secondary actors may not be connected for the benefit of the diagram's
readability.

© EULYNX Partners Page 55 of 120

Modelling Standard

ID Type Requirements

Eu.ModSt. 1207 | Info Generalisation relationship: use cases can be classified using the standard SysML generalisation relationship. The meaning of classification is similar to that for other classifiable model elements. One implication, for
example, is that the use case scenarios for the general use case are also use case scenarios of the specialised use case. It also means that the actors associated with a specialised use case can also participate in use case
scenarios described by a general use case. Classification of use cases is shown using the standard SysML generalisation symbol (see Fig. 746).

Eu.ModSt.747 | Info Include relationship: An include relationship between two UseCases means that the sequence of behaviour described in the included use case is included in the sequence of the base (including) use case.

Eu.ModSt.748 | Info Please note: Include relationships are only to be used if absolutely necessary, whereas extends relationships are not to be used at all.

Eu.ModSt.749 | Info The included use case may be a primary use case as well as a secondary use case.

Eu.ModSt.861 | Info When including a use case, this use case shall be named in the description of the sequence.

Eu.ModSt.750 | Info A primary use case is a complete UseCase having a domain trigger, a result, and a primary actor.

Eu.ModSt.751 | Info A secondary use case is an incomplete use case fragment. This is a "piece" of use case that doesn't fulfil at least one of the criteria of a primary use case. It is modelled for example if its flow is part of several (primary) use
cases. This allows to avoid redundant descriptions or enables the structured merge of specific behaviour and generic behaviour. "Include" creates a relationship between primary and secondary use cases.

Eu.ModSt.752 | Info In the example depicted in Figure 3496, the system-specific use case "LS_UC1.3:Report status" is included in the generic UseCase " EfeSUC1.2: Establish PDI connection".

Eu.Modst.7075 | Head | 8.3.2.3 Binding (see chapter 8.2.1)

Eu.ModSt.7754 | Info Diagram of model view "Functional Context" has an "Info" binding.

Eu.ModSt.7077 | Info Use Case has an "Info' binding if it is further specified in a refined model view.

Eu.ModSt.7894 | Info Use Case has a "Req" binding if it is not further specified in a refined model view.

Eu.ModSt.364 | Head | 8.3.3 Model View ""Use case scenario' of a SUS (AL1) - Description

Eu.ModSt.3503 | Info The model view "Use case scenario" as shown in Figure 3504 defines the behaviour of the use cases defined in the model view "Functional Context" by means of one or more use case scenarios at the upper level of
abstraction. These use case scenarios describe the interaction between the SUS and the actors in the SUS environment using SysML sequence diagrams.

Eu.ModSt.3506 | Info Use case name (1)
Name of the use case to which the interaction scenario belongs (e.g., LS_UC2.1: Indicate signal aspect).

Eu.ModSt.3508 | Info Use case scenario name (2)
The use case scenario name is the name of a possible information flow (shown as a sequence diagram) within a use case (Main Success Scenario or Alternative Scenario).

Eu.ModSt.3510 | Info Preconditions (3)
Preconditions are conditions that must be met and known to the actor triggering the stimulus for the scenario to start (see chapter 8.1.2.1.3).

Eu.ModSt.3512 | Info Interaction (4)
An interaction consists of a sequence of steps, starting with a stimulus (prefixed by a dash "-"), a validation, possibly a state change and a reaction. In addition, combined fragments may be included. A use case scenario
can consist of one or more interactions. The structure of an interaction follows the principle of the Action Block Scheme as described in chapter 8.1.2.1.2.

Eu.ModSt.3514 | Info Sequences and information flows (5)
Sequences consist of a text part describing the sequence and, in the case of an information flow, a graphical representation of the information flow in the form of arrows between the lifelines (11). In the text part,
elements of the model are shown in blue and explanatory text in black. In the graphical part, the corresponding exchange of information objects is shown accordingly. Here in the example (sequence 1), the information
object "Cd_Indicate_Signal_Aspect" is sent from the "Subsystem Electronic Interlocking" to "Subsystem Light_Signal". As it is a stimulus it is prefixed by a dash "-" in the text part of the sequence. In sequence 2, the
validation of the information object in the "Subsystem Light Signal" is described in the text part, without representation in the graphical part.

Eu.ModSt.3516 | Info Postconditions (6)
Postconditions are conditions for which changes have resulted from the sequence diagram. Conditions that have already been mentioned in the preconditions are not listed here.

Eu.ModSt.3518 | Info Actors (7)
Actors are systems (e.g., Subsystem Electronic Interlocking) or persons that interact with the SUS, i.e. trigger a stimulus and/or receive a response.

Eu.ModSt.3520 | Info System under specification and System boundary (8)
The boundary between the system under specification (SUS) and the actors is symbolised by a thick grey bar. The SUS (9) is located to the right of the grey bar and the actors to the left.

Eu.ModSt.3522 | Info Lifelines (10)

Lifelines represent the time axis of the SUS and the actors, with the time running from top to bottom.

© EULYNX Partners

Page 56 of 120

Modelling Standard

ID

Type

Requirements

Eu.ModSt.3504

Info

Figure 3504 Example of SUS model view "Use case scenario"

LS _UC2.1: Indicate signal aspect @ i

D X

Subsystem - Electronic Interlocking |T|ain driver

|

M ain Success Scenario: Indicate signal aspect [LS SD 2.1.1]
Precondition:

The Subsystem Light Signal is in the state OPERATIOMAL.
Interaction 2.1.1.A:

(5

|

1. - The Subsystem Light Signal receives from the Subsystem -
Electronic Interocking the Signal Aspect to be indicated.

2. The commanded Signal Aspect can be indicated uniformly
across all Lamps in the currently set luminosity for the entire
Signal Aspect.

3. The Subsystem Light Signal indicates the commanded Signal
Aspect in the currently set Luminosity.

Cd_Indicate_Signal_Aspect ’u

Signal_Aspect

I
I
I
[
I
[
I
[
I
[
|

4. The Subsystem Light Signal notifies the Subsystem -

Electronic Interocking of the indicated Signal Aspect.

Postcondition: |

I

The Subsystem Light Signal indicates the commanded Signal @
Aspect in the currently set Luminosity

I
1
I
Msg Indicated Signal Aspect |
I
I
I
|

Eu.ModSt.756

Head

8.3.4 Model View "Use case scenario' of a SUS (AL1) - Modelling rules

Eu.ModSt.757

Head

8.3.4.1 SysML diagram

Eu.ModSt.758

Info

Sequence Diagram:

A sequence diagram generally shows a stimulus-response behaviour, focusing on the temporal sequence of messages.

Eu.ModSt.759

Info

A sequence diagram depicting a use case scenario shows a specific sequence of messages, i.e. it represents a possible variant of a SUS use case.

Eu.ModSt.760

Info

In contrast to the complete stimulus-response behaviour of a SUS use case, described using a state machine, a use case scenario only represents a "flash light" view of this behaviour.

Eu.ModSt.761

Info

There are two variants of use case scenario layouts:
¢ Variant 1: Use case scenario with frame (Figure 1690) and
¢ Variant 2: Use case scenario without frame (Figure 6976).

Eu.ModSt.1693

Info

It has to be project-specifically determined which variant to apply. The example scenarios in this document are depicted according to variant 2.

© EULYNX Partners

Page 57 of 120

Modelling Standard

ID

Type

Requirements

Eu.ModSt.1690

Info

Figure 1690 Variant 1: Use case scenario with frame

sd LS UC2.1 -Main Success Scenario [LS SD 2.lﬂ ?I§ i
Subsystem - Electronic Jnteriuckmg] |Tsa|r1 driver
I
Main Success Scenario: Indicate signal aspect o—— ‘:Diagram headiﬂg pa['t 2:-

<Diagram heading part 1>

=Scenario frame=

Precondition:

The Subsystem Light Signal is in the state OPERATIOMNAL.
Interaction 2.1.1.A:

k.

1. - The Subsystem Light Signal receives from the Subsystem -
Electronic Interdocking the Signal Aspect to be indicated.

2. The commanded Signal Aspect can be indicated uniformly
across all Lamps in the currently set luminosity for the entire
Signal Aspect.

Cd_Indicate_Signal_Aspect ’u

3. The Subsystem Light Signal indicates the commanded Signal

: i i Signal_Aspect
Aspect in the currently set Luminosity.

Electronic Interocking of the indicated Signal Aspect.
Postcondition:

The Subsystem Light Signal indicates the commanded Signal

|

[

[

}

[

[

[

|

|

| ¢
4. The Subsystem Light Signal notifies the Subsystem - LJ‘

[
Aspect in the currently set Luminosity !

L
| Msg_Indicated Signal Aspect
|
|
|

I
I
|
I
I
I
I
I
|

Eu.ModSt.1691

Info

Variant 1: Diagram heading part 1
sd<><Abbr. System type>UC<DiaNo of UCD>.<UCNo>-<Scenario type><> [<Abbr. System ID><>SD<><DialNo of UCD>.<UCNo>.<DiaNo of SD>]

Eu.ModSt. 1695

Info

Variant 1: Diagram heading part 2
<Scenario type>:<> <Scenario name>

Eu.ModSt.766

Info

A use case may be defined by one or more use case scenarios in the following compositions:
- one Main Success Scenario and any number of Alternative Scenarios,

- only one Main Success Scenario,

- any number of Alternative Scenarios without a Main Success Scenario.

Eu.ModSt.1698

Info

Examples:
sd SubSUC2.1-Main Success Scenario [SubS LS SD 2.1.1]
Main Success Scenario: Indicate signal aspect

sd SubSUC2.2-Alternative Scenario [SubS LS SD 2.2.2]
Alternative Scenario: Illuminant failure

Eu.ModSt.1696

Info

Variant 1: Diagram heading part 1 (generic UseCase Scenario)
sd<><Gen UC type>UC<DiaNo of UCD>.<UCNo>-<Scenario type><>[<Gen UC type><>SD<> <DiaNo of UCD>,<UCNo>.<DiaNo of SD>]

Eu.ModSt. 1697

Info

Variant 1: Diagram heading part 2 (generic UseCase Scenario)
<Scenario type>:<> <Scenario name>

Eu.ModSt.1699

Info

Example:
sd GenUC1.2-Main Success Scenario [Gen SD 1.2.1]
Main Success Scenario: Establish PDI connection

sd EfeSUC1.2-Main Success Scenario [EfeS SD 1.2.1]
Main Success Scenario: Establish PDI connection

© EULYNX Partners

Page 58 of 120

Modelling Standard

ID Type Requirements

Eu.ModSt.6976 | Info
Figure 6976 Variant 2: Use case scenario without frame

LS_UC2.1: Indicate signal aspect —<Name of use case> 7

|Su|::'$}fﬁler?‘| - Electronic Ir1IErIt|¢I-:mg| Train driver | MM
I -
M ain Success Scenario. Indicate signal aspect [LS SD 2.1.1] k*\ |

P dition: 1 l i
recondition .;:D-lagram hqad]ng}

|
|
The Subsystem Light Signal is in the state OPERATIOMNAL. |
Interaction 2.1.1.A: | |
|

.

Cd_Indicate_Signal_Aspect

1. - The Subsystem Light Signal receives from the Subsystem -
Electronic Interlocking the Signal Aspect to be indicated.

2. The commanded Signal Aspect can be indicated uniformly
across all Lamps in the currently set luminosity for the entire
Signal Aspect.

3. The Subsystem Light Signal indicates the commanded Signal
Aspect in the currently set Luminosity.

I
I
|
I
|
I
|
4. The Subsystem Light Signal notifies the Subsystem - u‘
|
I

Electronic Interlocking of the indicated Signal Aspect. PR IDCicaed. <epTiR TapeCt

Postcondition:

The Subsystem Light Signal indicates the commanded Signal
Aspect in the currently set Luminosity.

I

I

“‘ Signal_Aspect]
I

| I

| I

| I
| I

Eu.ModSt.6977 | Info Variant 2: Diagram heading
<Scenario type>:<><Scenario name><> [<Abbr. System ID><>SD<> <DiaNo of UCD>.<UCNo>.<DiaNo of SD>]

Eu.ModSt.6978 | Info Examples:
Main Success Scenario: Indicate signal aspect [SubS LS SD 2.1.1]
Alternative Scenario: Illuminant failure [SubS LS SD 2.1.2]

Eu.ModSt.5269 | Info Variant 2: Diagram heading (generic UseCase Scenario)
<Scenario type>:<><Scenario name><> [<Gen UC type><>SD<> <DiaNo of UCD>.<UCNo>.<DiaNo of SD>]

Eu.ModSt.3562 | Info Example:
Main Success Scenario: Establish PDI connection [Gen SD 1.2.1]
Main Success Scenario: Establish PDI connection [AdjS SD 1.2.1]

Eu.ModSt.765 | Info <Scenario type> := "Main Success Scenario" | "Alternative Scenario"
where the Main Success Scenario specifies the service to be provided when nothing goes wrong, and the Alternative Scenario describes deviations from the Main Success Scenario.

Eu.ModSt.1211 | Info <Scenario name> := Unique designation of the scenario

Eu.ModSt.1210 | Info <DiaNo of SD> := Number of sequence diagram (Natural number starting with 1).

Eu.ModSt. 1220 | Info <Interaction heading> := Interaction <Name of interaction>:

Eu.ModsSt.791 Info <Name of Interaction> := <DiaNo of UCD>.<UCNo>.<DiaNo of SD>.<IId>

Eu.ModSt.792 Info <IId> := Id of an Interaction (Capital letters starting with "A"; if there are more than one Interactions on a scenario, the letter rises along the alphabet)

© EULYNX Partners Page 59 of 120

Modelling Standard

ID

Type

Requirements

Eu.ModSt.793

Info

Example:
Interaction 2.1.1.A:
1.-..

2. ...

Interaction 2.1.1.B:
3.-...

4. ...

Eu.ModSt.772

Head

8.3.4.2 SysML model elements

Eu.ModSt.762

Info

The model elements used to describe the model view "Use case scenario" and the structural principle are depicted in Figure 763.

Eu.ModSt.763

Info

Figure 763 Model elements and structural principle of a use case scenario

<Name of UseCase> i System

boundary

«<Diagram heading= Actors
Description area

Precondition:

Cendition on the sys tem s tate that is expected to be

known by the initiator ofthe stimulus triggering the first
interaction.

<Interaction heading>

System

Stimulus

<I0 Flow name=

Egsmm blmksignatumﬁ

1. - The <System block signature> receies a stimulus (for
example fom an actor).

2. The <System block signatwre> validates the stimulus
acoording to the condition on the system s tate that 5 not
expacted to be known by the initiator of the stimulus

3. The <System block signature> alters its internal state.

Response

<I0 Flow name:=

I

I

I

|

I

I

|

I
4. The <System block signature> responds with the result. U’f'
<Interaction heading= I

5. - The <System block signature> receies a stimulus (fer
example an intras y's tem event) Stimulus

6. The <System block s ignature> validates the stimulus
according to the condition on the system state that 5 not I
expected to be known by the initiator of the stimulus |

7. The <System block signature> calls an included |
UseCas e <<include>> <Name of Us eCazs e>

8. The <System block signature> alters its internal state. I

Lifeline

<Name of UseCase=

O

<0 Flow name>

8. The =System block signature> res ponds with the
res ult.
— Asappropriate further interactions —

Postcondition:
Pos teondition of the UseC g e Seanans (conditiang which |
deviate from the preconditions) |

Include

Prohe Response

Eu.ModSt.773

Info

As depicted in Fig. 763, a sequence diagram describing a UseCase scenario consists of the following vertical segments:

- Description area,

- Lifelines of actors,

- System boundary,

- Lifeline of the system.

Eu.ModSt.927

Info

Description area:

In the vertical segment "Description area" the action steps of the scenario are to be described.

Eu.ModSt.1278

Info

Lifelines:

The principal structural feature a of a scenario is the lifeline. A lifeline represents the relevant lifetime of a property of the scenario's owning block, which will be either a SysMI part or a SysML reference property. A part can

be typed by an actor, which enables actors to participate in scenarios as well.

© EULYNX Partners

Page 60 of 120

Modelling Standard

ID Type Requirements

Eu.ModSt.928 | Info Lifelines of actors:
In the vertical segment Lifelines of actors, the actors of the system are to be arranged. This section may be empty.

Eu.ModSt.774 | Info Lifeline of the system:
The vertical segment Lifeline of the system is represented by an instance of the block describing the structure of the system such as "Subsystem Light Signal".

Eu.ModSt.775 | Info Please note: The instance of the block has to be created once and used in all corresponding sequence diagrams.

Eu.ModSt.776 | Info Architectural boundary:
The architectural boundary (dashed vertical line depicted as default at any sequence diagram) is to be arranged to the right of the vertical segment "System" and overlaid by a white-coloured note.

Eu.ModSt.777 | Info A Use case scenario of a primary Use Case is to be structured horizontally as depicted in Fig. 763.

Eu.ModSt.778 Info Precondition:
After the declaration of the diagram heading, the preconditions are to be stated.

Eu.ModSt.1705 | Info General rules for pre- and postconditions:
Pre-and postconditions are to be defined in the following order:
1. States (if defined) of objects involved in the sequence,
2. States of timers (e.g. The Subsystem — Point monitors the Timevalue “Con_tmax_Point_Operation”) involved in the sequence,
3. All other conditions of objects, which are required before proceeding the sequence (in case of preconditions) or which are achieved after completing the sequence.

Eu.ModSt.1706 | Info When objects are named in pre-or postconditions, the following order is to be followed:
1. Itinerary

2. Train Unit / Infrastructure Element

3. Vehicle

Eu.ModSt.1707 | Info When nested states of objects (refer to ABB.4.250) are named in pre-or postconditions, all nested and parent states are to be named.

Eu.ModSt.1708 | Info With the aforementioned rules, the pre-and postconditions are to be structured as follows:
<Pre/Post>conditions

<Object 1 is in state 1>.

<Object 1 is in state n>.

<Object 2 is in state 1>.

<Object 2 is in state n>.

<Object m is in state n>.

<Conditions 1>.

<Conditions n>.

Eu.ModSt.779 | Info Preconditions denote what must be true before the UseCase runs. The preconditions are stated at this place if they are expected to be known by the initiator of the stimulus of the first interaction of the UseCase.

Eu.ModSt.780 | Info The preconditions are to be structured as follows:
Precondition:
<Precondition 1>.

<Precondition n>.

Eu.ModSt.782 | Info If there are no preconditions to be stated, three hyphens are to be depicted instead of them:
Precondition:

Eu.ModSt.786 | Info There may be cases when a precondition is not expected to be known by the initiator of the stimulus. In those cases, the precondition is to be described as validation condition at action step 2 within the first interaction
according to the action block schema (see chapter 8.1.2.1.2).

Eu.ModSt.787 | Info If stated at this place, alternative scenarios may be derived from that precondition.

© EULYNX Partners Page 61 of 120

Modelling Standard

ID Type Requirements
Eu.ModSt.789 | Info The preconditions are followed by the occurrence specifications. A lifeline is related to an ordered list of occurrence specifications that describe what can happen to the instance (e.g. Subsystem Light Signal) represented by
the lifeline during the execution of the scenario.
Eu.ModSt.1279 | Info Those occurrences are specified by action steps structured by one or more interactions according to the structure depicted in Figure 763.
Eu.ModSt.790 | Info Interaction:
An interaction represents a functional system requirement structured according to the action block schema as described in chapter 8.1.2.1.2. It is understood as an interaction contract as introduced in chapter 8.1.2.1.3.
Eu.ModSt.794 | Info An interaction is to be invoked at its first action step
- by a stimulus from an actor of the system,
- by a timed trigger,
- by an intrasystem event (that is, an event that occurs in the system) or
- when entering or leaving a system state.
Eu.ModSt.795 | Info The invoking of an interaction by a stimulus from an actor of the system is to be described as an information flow from the actor in the system environment to the system as depicted in Figure 796.
Eu.ModSt.797 | Info The response of the system to an actor (primary actor or secondary actor) is to be described as an information flow from the system to the actor in the system environment as depicted in Figure 796.
Eu.ModSt.796 | Info
Figure 796 Information flow across the system boundary
A A
subS | |Dniver SubSLS l
EIL - |
: I
: ; I
| | Stimulus invoked by
I I the actor SubS EIL
| | | _ '
| | Cd_Indicate_Signal_aspect |
I I
I I -
Signal_aspect
|
| Msg_lnd¢ated_signal_as pect i
| | '
| X |
| I Responses to the |
actors Driver and |
' ' SubS EIL
Eu.ModSt.799 | Info The information flows are to be defined using SysML Item Flows or SysML signal events (in the following referred to as IO Flows) .
Eu.ModSt.800 | Info The data types of the SysML Item Flows are to be hidden on the sequence diagram unless there is a project-specific commitment.
Eu.ModSt.7941 | Info When using SysML signal events as 10 Flows, the parameter values can also be displayed.
Example: Msg_TVPS_Occupancy_Status(Vacant, Unable to be forced to clear, Command from EIL).
Eu.ModSt.888 | Info An IO Flow which represents a permanent information flow is only to be depicted on the diagram as demonstrated in Figure 932 if this information flow has changed.

© EULYNX Partners

Page 62 of 120

Modelling Standard

ID Type Requirements
Eu.ModSt.932 | Info
Figure 932 Stimulus changes permanent information flow
SysUC1.1: Switch on the light i ;?;
Main Success Scenario: Switch on the light Button Light
[Sys LC SD 1.1.1] T T 5
Precondition: | | I
[| | !
Interaction 1.1.1.A: | | button pressed |
1. - The Light Controller receives the requast | | »
button_pressed from the actor Button. I |
2. The Light Controlier evaluates that the request is | | |
valid because it is in state OFF. I I |
3. The Light Controller changes to state ONM. | > !ight_nn |
4. The Light Controller switches on the Light. | u‘ |
Postcondition: | | |
The Light Controller is in state ON. . : H |
Eu.ModSt.931 | Info In the example depicted in Figure 930, the stimulus "button_pressed" does not change the permanent information flow "light_on". Thus, the IO Flow "light_on" is not depicted on the diagram.
Eu.ModSt.930 | Info
Figure 930 Stimulus does not change permanent information flow
SysUC1.1: Switch on the light i i
Alternative Scenario: The light is already Light Sis LC
switched on [Sys LC 5D 1.1.2] -
Precondition: | | |
| | '
Interaction 1.1.2.A: | | |
1. = The Sys LC receives the request button_pressed | | button_pressed »
from the actor Button. I I]
2. The Sys LC evaluates that the request is not valid | | |
because it is already in state OMN. I I |
3. The Sys LC keeps the Light being switched on.
Esibndi e No 10 Flow because the permanent
The Sys LC is in state ON. information flow has not changed
Eu.ModSt. 1267 | Info Representing time on a sequence diagram:
In a sequence diagram, time progresses vertically down the diagram and occurrences on a lifeline are correspondingly ordered in time. In addition, the send occurrence and receive occurrence for a single message are also
ordered in time.
Eu.ModSt.1274 | Info Time observation and duration observation:
In addition to relative ordering in time, time can be represented explicitly on sequence diagrams. A time observation refers to an instant in time corresponding to the occurrence of some event during the execution of the
scenario, and a duration observation refers to the time taken between two instants during the execution of the scenario.
Eu.ModSt.1268 | Info Time constraint and duration constraint:
A time constraint and a duration constraint can use observations to express constraints involving the values of those observations. A time constraint identifies a constraint that applies to a single occurrence on the sequence
diagram. A duration constraint identifies two occurrences, called start and end occurrences, and expresses a constraint on the duration between them. A duration constraint can apply to any element deemed to have
duration, such as a message or an execution, in which case the constraint applies between the occurrences that bracket the element's duration.
Eu.ModSt.1269 | Info A time constraint is shown using a standard constraint expression in braces attached by a dashed line to the constrained occurrence.
Eu.ModSt. 1270 | Info A duration constraint is shown by a double-headed arrow between the two constrained occurrences with the constraint floating near it, also expressed in standard constraint notation (i.e. in braces). A duration constraint

may also be shown as a standard constraint floating close to an element such as a message.

© EULYNX Partners

Page 63 of 120

Modelling Standard

ID Type Requirements
Eu.ModSt.1277 | Info Observations are shown in a way similar to constraints, but instead of an expression in braces, an observation has the name of the observation followed by an equal sign and then an expression indicating how the value for
the observation is obtained.
Eu.ModSt.1275 | Info An example of representing time on a sequence diagram is shown in the scenario depicted in Figure 1272. A time observation, t, is taken at the point when the button is pressed using the expression "t = now". The time
constraint {t + 1 ms..t + 2 ms} indicates that the message receipt must occur between 1 ms and 2 ms after t. The total time taken between pressing the button and switching on the light should be not more than 10 ms,
as indicated by the duration constraint between action step 1 and action step 4. The duration between pressing the button and receiving the corresponding message is observed via a duration observation d, and there is a
constraint ({d..d*2}) on the response "light_on" to not exceed 2 times the duration d.
Eu.ModSt.7940 | Info Please note: always use “<=" instead of “<".
Eu.ModSt.1272 | Info
Figure 1272 Example of representing time on a sequence diagram
T K
SysUC1.1: Switch on the light A Fa¥ . S—
Altemative Scenario: Representing [ﬁ[.ﬁ.’;,ﬁ] I[i;;'ﬁ't_; AN EMISAER
time [Sys LC SD 1.1.4) —
= I ." |
Precondition: fime’ D.GSE."L’a{.'IDH {t +1 ms..t+2 ms} I
- t=now | ' :
; | -
|ntE'mC1]DI'I 1.1-1.#: . i } I buttﬂn_presged ~ i :
; . L |
1. - The Sys LC receives the request : 'Y 4= duration
button_pressed from the actor : . , .
Button. \ duration observation
2. The Sys LC evaluates that the : {<= 10 ms} !
request is valid because it is in state | :
OFF. [:
3. The Sys LC changes to state ON. ;_,. v light_on :
4, The Sys LC switches on the Light. |_|" .d4°2) :
Postcondition: ! : : [
The Sys LC is in state ON. : duration constraint |
Eu.ModSt.804 | Info Timed trigger (timer):
A timed trigger indicates that a given time interval has passed since the occurrence of some event, such as entering a state (intrasystem event) or receiving a request during the execution of the scenario.
Eu.ModSt.1221 | Info The term "after" followed by the time such as "after {10 sec}", or "after{t_con_t_max}" indicates that the time is relative to the moment of an occurrence.
Eu.ModSt.1276 | Info An example of a timed trigger is shown in the scenario depicted in Figure 805. The system responses with "light_on" 10 sec after the state ON has been entered.

© EULYNX Partners

Page 64 of 120

Modelling Standard

ID Type Requirements
Eu.ModSt.805 | Info
Figure 805 Example of a timed trigger
SysUC1.1: Switch on the light 3 X
Altemative Scenaro: Switch on the light Button Light Sys LC
delayed [Sys LC 1.1.3] : T =
I I :
I I i
Precondition: ! ! :
The Sys LC is in state OFF. : : |
Interaction 1.1.3.A: I I :
I I
1. - The Sys LC enters the state ON. | | :
I I
| | after {10 sec} | !
| | I
| I ;
2. The Sys LC switches on the Light. [L'F(] _ — 1
. ; | light_on I
Postcondition: : : [
The Sys LC is in state ON. [[| f
Eu.ModSt.806 | Info Intrasystem event:
An intrasystem event is described as demonstrated in the following example:
1. -The SubS LS detects a change of the indicated signal aspect.
Eu.ModSt.807 | Info A stimulus created by entering or leaving a system state is to be described as demonstrated in the following examples.
1. - SubS LS enters the state OPERATING.
1. - SubS LS exits the state OPERATING.
Eu.ModSt.7939 | Info The graphical representation of the time behaviour as shown in figure 1272 and figure 805 can be supplemented by a description in the description area of the sequences. "t_con_t_max" represents the defined time period
(duration):
e Start of timer should be mentioned within the corresponding step (trigger).
¢ “Subsystem X starts to monitor the time period “t_con_t_max".”
¢ Reaction for timer that shall be waited for --> where possible combine within corresponding step otherwise keep it separate.
¢ “Subsystem X detects that time period “t_con_t_max" has expired.”
¢ Reaction for timer that has been exceeded (unintended case) --> where possible combine within corresponding step otherwise keep it separate.
¢ “Subsystem X detects that time period “t_con_t_max” has exceeded.”
¢ Restart of a timer within the corresponding step (trigger).
¢ “Subsystem X stops to monitor time period “t_con_t_max" caused by first command and starts to monitor the time period ™t_con_t_max” caused by second command.”
¢ Reset of a timer within the corresponding step (trigger).
¢ “Subsystem X stops to monitor time period “t_con_t_max".”
Eu.ModSt.7943 | Info Time periods shall be defined using block properties without further specification of the values. The values to be used shall be specified separately in the requirements management tool (chapter 5.3 Configuration and
engineering data) as binding requirements and linked to the corresponding definitions.
Eu.ModSt.808 | Info Combined fragments:
In order to parallelize interactions as well as action steps of an interaction or define alternatives or loops, combined fragments defined by the Operators "par", "alt" or "loop" may be used.
Eu.ModSt.809 | Info In sequence diagrams, combined fragments are logical groupings, represented by a rectangle, which contain the conditional structures that affect the flow of messages. A combined fragment contains operands and is
defined by operators (see Figure 812 and Figure 935).
Eu.ModSt.855 | Info Operands are separated by dashed lines.
Eu.ModSt.856 | Info Depending on the operator, there is a guard containing a constraint expression that indicates the conditions under which it is valid for the operand to begin execution. Guards appear at the beginning of the combined
fragment following the corresponding operator (example: alt [Guard]).
Eu.ModSt.810 Info The operator identifies the type of logic or conditional statement that defines the behaviour of the combined fragment.

© EULYNX Partners

Page 65 of 120

Modelling Standard

ID

Type

Requirements

Eu.ModSt.811

Info

Operator "par"

In the example depicted in Figure 812, the usage of the operator "par" is demonstrated. The message Msg_Response 3 is parallelized to Msg_Response_1 followed by Msg Response 2 using two par operands.

Eu.ModSt.857

Info

If a par operand consists of more than one action step, the action steps are structured according the following schema (see also Figure 812):

par
3.al action step.
3.a2 action step.
3.ax ...

also par
3.b1 action step.
3.b2 action step.
3.bx ...

also par
3.cl action step.
3.cx...

end par

Eu.ModSt.812

Info

Figure 812 Example of a combined fragment defined by the operator "par"

SubSUC1.3:Apply combined fragments i

Main Success Scenario. Operator Actor
"par" [SubS A SD 1.3.1]

Precondition:
State of SubS A. Operator “par”

Interaction 1.3.1.A:

1. - SubS A receives are

2. Sub& A valid e request.

Cd_Request_1 U

par

3.a1 SubS A changes its state.

Msg_Response_1

T

|

|

|

|

|

|

]

|

|
3.a2 SubS A responses to Actor. o Lf

3.a3 SubS A responses to Actor.

also par

Msg_Response 2

3.b1 SubS A responses to Actoy

end par

Msg_Response_3

Postcondition: Par operand
State of SubS A,

PP

© EULYNX Partners

Page 66 of 120

Modelling Standard

ID

Type

Requirements

Eu.ModSt.813

Info

Interactions are to be parallelized according to the following schema (see also Fig. 1255):
par
Interaction <Name of the interaction>
4.al - action step.
4.a2 action step.
Interaction <Name of the interaction>
4.a3 - action step.
4.a4 action step.
4.ax ...
also par
Interaction <Name of the interaction>
4.b1 - action step.
4.b2 action step.
4.bx ...
end par

Eu.ModSt.1255

Info

Figure 1255 Operator "par" with nested interactions

SubSUC1.3:Apply combined fragments i

Alternative Scenario: Operator "par” with Actor [:Subsg
nested interactions [SubS A SD 1.3.2)

Precondition:
State of SubS A,

Interaction 1.3.2.A: Cd_Request_1

1. - SubS A receives a request from Actor.

2. S3ubS A validates the request

Msg_Response_1

T

]

1

I

I

]

i
3. SubS A responses to Actor. L](

par |

Interaction 1.3.2.B:

]
|
1
4.a1 - SubS A receives a request |
1
1
I

Cd_Request_2

from Actor

4.a2 SubS A validates the request.
4.a3 SubsS A responses to Actor.

Msg_Response_2

h

also par EnSERRR PRt et T SR e S e

I
Interaction 1.3.2.C: Cd_Request 3 !
= —

]

i

4.b1 - SubsS A recenves a request I
from Actor. |
1

[

4.b2 SubS A validates the request.
4.b3 SubS A responses to Actor. Llf“

Msg Response_ 3
end par

Postcondition:
State of SubS A,

Eu.ModSt.1700

Info

Operator "par-strict”
The keyword "strict" is defined as extension to the operator "par":

¢ Semantics: If the "par" operator of a combined fragment is extended by the keyword "strict", all operands must be executed strictly parallel. This means that IOFlows are sent at the exact same time and included or

extended UseCases are invoked at the same time and terminated at the same time.
¢ Syntax: Extend keyword "par" in sequence text as well as in graphical frame box by "-strict"

Eu.ModSt.1701

Info

In the example in Fig.1702, the usage of the extension "strict" of the operator "par" is shown.

© EULYNX Partners

Page 67 of 120

Modelling Standard

ID Type

Requirements

Eu.ModSt.1702 | Info

Figure 1702 Example for the application of the extended operator "par-strict"

SubSUCH1.3: Apply combined fragments i i

Alternative Scenario: Qperator "par- |An::t|:|r1| |An::tn:|r2|
strict” [SubS A S0 1.3.8]

Precondition:
Sub3 A Qs in ==state==.

Interaction 1.3.8A:

E

ki

N (S

1. - Sub3 A receives arequest from Actor.
2. Subs A validates the request. Cd—REqUE;EtJ
parstrict par-strict
J.a1 3ubS A monitors a safety relevant state. !
also par-strict -____i________- ______________

3.b1 3ubsS A commands Actor2 to execute an action

based on a safety relevant state. H‘ Cd_fiption_Safe

end par-strict

Postcondition;
Sub3 A is in ==different state==.

f
I I

Eu.ModSt.1703 | Info

If a "par-strict" operand consists of more then one action step, the action steps are structured according the following schema:

par-strict
3.al action step.
3.a2 action step.
3.aX ...

also par-strict
3.b1 action step.
3.b2 action step.
3.bx ...

also par-strict
3.cl action step.
3.CX...

end par-strict

Eu.ModSt.936 Info

Operator "alt"

In the example depicted in Figure 935, the utilisation of the operator "alt" is demonstrated in the way that exactly one of its operands is selected based on the value of its guard. The guard on each operand is evaluated
before selection, and if the guard on one of the operands is valid, that one is selected. If more than one operand has a valid guard, the selection is nondeterministic. An optional else fragment (else fragment without guard)
is valid only if none of the guards on the other operands are valid.

Eu.ModSt.1704 | Info

In case no guard of an alt operand is valid then no operand is executed, unless an optional else fragment without a guard is defined, in which case that operand is selected.

Eu.ModSt.814 Info

If an alt operand consists of more then one action step, the action steps are structured according the following schema (see also Figure 935):
alt [Guard 1]
3.al action step.
3.a2 action step.
3.ax...
else alt [Guard 2]
3.b1 action step.
3.b2 action step.
3.bx...
end alt

© EULYNX Partners

Page 68 of 120

Modelling Standard

ID Type Requirements
Eu.ModSt.935 | Info
Figure 935 Example of a combined fragment defined by the operator "alt"
SubSUC1.3: A combined fragments %
Altemative Scenario: Operator "alt” Actor ESuhS 5
[SubS A 5D 1.3.3] . -
|
Precondition: P : |
State of SubS A. Operator “alt™ | |
|
Interaction 1.3.3.A: 'r |
1
i i I r
1. - SubS A receives a | Cd_Request_1
2. lidates the request. [
alt [Guard 1] at |
3.a1 SubS A changes its state. ' Msg_Response_1
L= — T
3.a2 SubS A responses to Actor.
3.a3 SubS A responses to Actor. ih Msg_Response_2
else alt [Guard 2] e 1 A 4l
3.b1 SubS A responses to Actor. U{ Msg_Response_3
else alt [Guard 3] PSS, ARSI SER——————— L
3.c1 SubS A responses to Actor. U{ Msg_Response_4
end alt | - -
!
4, SubS A responses to Actor. u‘{ Msg_Response_5 |
Postcondition: I ‘I
State of SubS A. Alt operand : L |
Eu.ModSt.937 | Info Interactions are to be used in alt operands according to the following schema (see also Figure 1256):

alt [Guard 1]
Interaction <Name of the interaction>
4.al - action step.
4.a2 action step.
Interaction <Name of the interaction>
4.a3 - action step.
4.a4 action step.
4.ax ...
else alt [Guard 2]
Interaction <Name of the interaction>
4.b1 - action step.
4.b2 action step.
4.bx ...
end alt

© EULYNX Partners

Page 69 of 120

Modelling Standard

ID Type Requirements

Eu.ModSt.1256 | Info
Figure 1256 Operator "alt" with nested interactions

SubsSUC1.3:Apply combinedfragments i

Alternative Scenario: Operator "alt" with Actor :SuhSE
nested interactions [SubS A SD 1.3.4] M

Precondition:

T
i

State of SubS A ;
i

Interaction 1.3.4.A: I
I

I

Cd _Request 1 .
1. - SubS A receives a request from Actor.
2. SubS A validates the request. » Msg_Response_1
3. SubS A responses to Actor. |
alt [Guard 1] lalt I
Interaction 1.3.4.B: Cd_Raq.ast_Z‘:

4.a1 - 5ubS A receives a request
from Actor.

4.a2 SubsS A wvalidates the request.

Msg_Resporse_2

I
I
|
I
[
[
|
4.a3 SubS A responses to Actor. u“':
else alt [Guard 2] L L - - W Lo
I
I
!
I
I
I
|
[
[
[

i
Interaction 1.3.4.C: Cd Req.ast 3 [
= =]

4.b1 - SubS A receives a request
from Actor

4.b2 SubS A wvalidates the request
4.b3 SubS A responses to Actor.
end alt

Msg_Response_3

Postcondition:
State of SubS A.

Eu.ModSt.854 | Info Please note: the guards of the alt operands are not to be depicted inside the combined fragment but only in the textual description of it.

Eu.ModSt.1983 | Info Operator "opt":
The operator "opt" (optional sequence) is equivalent to the operator "alt" with only one operand. This implies that the operand is either executed or skipped depending on the validity of the guard (condition).

Eu.ModSt.858 | Info Operator "loop":

A loop is specified by the interaction operator "loop" in which the trace represented by its operand repeats until its termination constraint is met. It may define lower and upper bounds on the number of iterations as well as
the guard expression. As shown in Figure 1257, these bounds are documented in brackets after the loop keyword as (minimum, maximum or termination condition), where the maximum (upper bound) may have the value
* indicating an unlimited upper bound.

Eu.ModSt.859 | Info A combined fragment describing a loop is to be structured according to the following schema (see also Figure 1257):
loop (minimum, maximum or termination condition)

1. action step.

2. action step.

3. action step.

4. ...

© EULYNX Partners Page 70 of 120

Modelling Standard

ID Type Requirements

Eu.ModSt.1257 | Info
Figure 1257 Example of a combined fragment defined by the operator "loop"

SubSUC1.3:Apply combinedfragments }’t

Alternative Scenario: Operator "loop" Actor
[SubS A SD 1.3.5] : - T
Precondition: 8 o

State of SubS A. Operator “loop

Interaction 1.3.5.A:

k.

Cd_Reguest_1

1. - SubS A receives a est from Actor.

2. SubS idates the request.

loop (Mminimum, maxim um k::op|
or termination condition)

Msg_Response_1

3. Subs A responses to Actor.

Msg_Response_2
end loop

5. SubS A responses to Actor.

Postcondition:
State of SubS AL

Msg_Response_3 :
|

4. SubS A responses to Actor. U‘
[
I.-"
)
[
[
, 1

Eu.ModSt.860 | Info Note: the (minimum, maximum or termination condition) of the loop operand is not to be depicted inside the combined fragment but only in the textual description of it.

Eu.ModSt.1261 | Info As shown in Figure 1258 and Figure 1259 the operands of combined fragments may themselves contain combined fragments, and thus can be composed into a tree hierarchy.

© EULYNX Partners Page 71 of 120

Modelling Standard

ID Type

Requirements

Eu.ModSt.1258 | Info

Figure 1258 Operators "par" and "alt" with nested operators

SubsSUC1.3: Apply combined fragments

Alternative Scenano: Operators “par” and
“alt" with nested operators [Sub3 A SD 1.3.6]

Precondition:
State of SubS A

Interaction 1.3.6.A:
1. - SubS A receines a request from Actor.
2. Subs Anvalidates the request.
par
J.a1 SubsS A responses to Actor,
also par
alt [Guard 1]
2.b1.a1 SubS A responses to Actor.
else alt [Guard 2]
par
3.b1.b1.a1 SubS A responses to Actor
also par
3.b1.b1.a2 SubS A responses to Actor,
end par

end ait

also par

leep (minimum, maximum
or termination condition)

3.6¢1.1. SubsS A responses to Actor.
3.c1.2 SubS A responses to Actor.
end loop

end par

Postcondition:
State of SubS A

ESuhS E

|
|
|
|
| Cd_Request 1
|
|
parJ ' Msg_Resporse_1
-7 -------
lalt | 1
ITI"" Msg_Resporse_2
et a
par)i Msg_Response_3
U"
Lt e e o S e S S sy
LI Msg_Resporse_4
1
|
A N S
[loop |
i Msg_Response_5
Msg_Response_6

© EULYNX Partners

Page 72 of 120

Modelling Standard

ID

Type

Requirements

Eu.ModSt.1259

Info

Figure 1259 Operator "loop" with nested operators

SubSUC1.3:Apply combinedfragments /)i
Alternative Scenario: Operator "loop" with Actor

nested operators [SubS A SD 1.3.7] =

T
|
Precondition: ' |
State of SubS A. : |
| |
|

Interaction 1.3.7.A:

1. - SubS A receives a request from Actor.
2. SubS A validates the request.

|
|
loop (minimum, maxim um Inup| !
or termination condition) :

Cd_Request_1

alt [Guard 1] alt | Msg_Resporse_1
3.a1 SubS A responses to Actor. =

else alt [Guard 2] s o e et 2 g
3.b1 SubS A responses to Actor. LJ
end alt |

par EJ.

4.a1 SubS A responses to Actor.

also par - - - -
4.b1 SubS A responses to Actor. |_|‘_|<

|

|

|

IIT:

|

|

Msg Response 4
end par

end loop

5. SubS A responses to Actor,

Postcondition:
State of SubS A.

Msg_Response_5 :
|
|

Eu.ModSt.815

Info

Postcondition:

The postconditions positioned after the last interaction of a scenario representing the results of a UseCase are to be structured as follows:
Postcondition:

<Postcondition 1>.

<Postcondition n>.

Eu.ModSt.816

Info

Example (see Fig. 715):
Postcondition:
SubsS LS indicates the commanded signal aspect.

Eu.ModSt.1222

Info

Postconditions which equal preconditions are not to be stated.

Eu.ModSt.938

Info

If there are no postconditions to be stated, three hyphens are to be depicted instead of them:
Postcondition:

© EULYNX Partners

Page 73 of 120

Modelling Standard

ID Type

Requirements

Eu.ModSt.3547 | Info

Include relationship
As shown in Figure 3549 an <<include>> relationship can be used to jump from an interaction scenario to the interaction scenario of an included use case (e.g., SubSUC1.3: Report status). The text part and the include
symbol (1) indicate which use case is to be accessed. After processing the included interaction scenario, the original interaction scenario is continued.

Eu.ModSt.3548 | Info

Alternatively to the include symbol (1) an "interaction use" (2) may be used to indicate which included interaction scenario is to be accessed. "Interaction uses" are shown as frames with the keyword "ref" in the frame
label. The body of the frame contains the name of the referenced interaction scenario.

Eu.ModSt.7949 | Info

For each SD that is referenced in another SD, a notice must be inserted in the modelling tool (e.g. Properties ->Text->Description) that corresponds to a defined schema:
¢ This SD is part of [referred SD].

Eu.ModSt.7950 | Info

The notice is to be transferred to "Requirements Part 2" of the specification document generated in the requirements management tool.

Eu.ModSt.3549 | Info

Figure 3549 Include relationship in interaction scenarios

Imteraction 1.2.1.C:

8. - The EULYMNX field elem ent Subsystemn receives tom the Subsystem -
Electronic Intedocking the request totransmit the status. |

B. The ELULYMX figld elem ent Subsystem notifies the Subsystem - Electranic L
|
L

, Cd_Initialisation_Request
{= Con_tmax_PDI_Connection}

M eg_Start_Intialisation

L]
I

O
SubSUC1. 3: Report status |

Intedocking ofthe tranemizgion of the status information.

7. The EULYNX field element Subsystem reports the status information to
Subsystem - Electronic Intedocking. =<includes= SubSUC1 .3 Repott status

Y I
8. The ELULYMNX field elemert Subsystem notifies the Subsystem - Electronic My Initializati
nitiali=ation_Cornpleted
Irtedocking that the transmission ofthe status information iz complete. - = P |
= -
= L1
6. The EULY NX field element Subsy stem notifies the Subsy stem - Electronic Msg_Start_Initialisation i
Interlocking of the transmission of the status information. o 2
7. The EULY MX field element Subsystem reports the status information to ref
Subsy stem - Electronic Interocking. ’ 2 5D 1.3.x Report status
8. The EULY MNX field element Subsystem notifies the Subsystem - Electronic [~ Msg_Initialisation_Completed I
Interlocking that the transmission of the status information is complete. i = |

Eu.ModSt.7084 | Head

8.3.4.3 Binding (see chapter 8.2.1)

Eu.ModSt.7753 | Info

Diagram of model view "Use case scenario” has an "Info" binding if it is further specified in a refined model view (e.g. through a state machine).

Eu.ModSt.7938 | Info

Diagram of model view "Use case scenario” has a "Req" binding if it is not further specified in a refined model view.

Eu.ModSt.7942 | Info

The definitions of time periodes (e.g. Con_tmax_PDI_Connection) represented by block properties have "Def" bindings.

Eu.ModSt.7944 | Info

The values of the defined time periods, which are specified and linked separately in the requirements management tool, have "Req" bindings.

Eu.ModSt.2131 | Head

8.3.5 Model View "Logical Context" of a SUS (AL1) - Description

Eu.ModSt.2132 | Info

The model view "Logical Context" as shown in Figure 2134 represents the environment of the SUS and provides initial information about the SUS boundaries and the relationships to the interaction partners. This diagram
contains the following definitions relevant to implementation:
* Interaction partners: the representation of the interaction partners as actors with whom the SUS concerned must be able to interact,
¢ Logical SUS interfaces:
- number of required logical interfaces represented by associations to interaction partners in the SUS environment defined by means of multiplicities at the association ends
- possible directions of the interaction (uni- or bidirectional).
- kinds of interfaces such as SCI-P, SMI-P and so on defined by means of roles at the association ends.

Eu.ModSt.2136 | Info

Interaction partners

Interaction partners (4, 5) of the SUS (1) are represented by actors. An actor describes a person (for example "Maintainer") or another system (for example the "Subsystem - Electronic Interlocking) in the role of a user of
services offered by the SUS concerned (here "Subsystem Point"). At the logical viewpoint actors are represented by logical structural entities if they are in the context of a system element belonging to the same overall
system. If an actor in the context of a system element is outside of the overall system of this system element (adjacent system) it is represented by an environmental structural entity.

Eu.ModSt.7880 | Info

Figure 2134 therefore includes for example the following related definitions:
¢ system element "Subsystem Electronic Interlocking" represented by a logical structural entity (LSE) assumes the role of an actor in the environment of "Subsystem Point" belonging to the same overall system (4).
 system element "Point machine" represented by an environmental structural entity (ESE) assumes the role of an actor in the environment of "Subsystem Light Signal" not belonging to the same overall system (5).

© EULYNX Partners

Page 74 of 120

Modelling Standard

ID Type Requirements
Eu.ModSt.2139 | Info Logical SUS Interfaces
The connection between the SUS (represented by a logical structural entity) and an actor represents a logical interface (2, 3). It is depicted as an association that is a continuous line between the actor and the SUS. It
represents the definition that the SUS must be able to interact with the connected actor through a corresponding logical interfaces.
Eu.ModSt.2140 | Info The association also represents the possible interaction directions of the interface. No arrow heads means that the interaction is bidirectional. An arrow head on the other hand indicates that an interaction is only possible in
the direction of the arrow.
Eu.ModSt.2141 | Info On the side of the actor of the association, a multiplicity indication describes in more detail with how many of the respective actors the SUS concerned must be able to interact i.e., how many logical interfaces are required.
Eu.ModSt.2142 | Info The definition of the quantity of each actor by means of multiplicities represents an important requirement regarding system development. It is obvious that it makes a difference, for example, whether the system depicted
in Figure 2134 requires an interface to one "Subsystem Electronic Interlocking" or to several.
Eu.ModSt.2143 | Info The multiplicity "1" is defined at the SUS side of the association. The reason for this is that only requirements for the SUS concerned may be phrased in the respective requirements specification. However, according to the
SysML syntax, a multiplicity indication at the SUS side would represent a statement for the actor.
Eu.ModSt.2144 | Info Some examples for the representation of multiplicities and their meaning:
1 or blank exactly one
0.1 none or one
* none or several
1.* one or several
2.4 at least two and at most four
Eu.ModSt.7881 | Info Figure 2134 therefore includes for example the following related definitions:
¢ the "Subsystem Point" must be able to interact with exactly one "Subsystem Electronic Interlocking” as an actor, with the interaction possible in two directions.
¢ the "Subsystem Point" must be able to interact with one or more actors "Point machine", with the interaction possible in two directions.
« the "Subsystem Point" must be able to interact with exactly one "Basic Data Identifier" as an actor, with an interaction only possible from "Basic Data Identifier" to the "Subsystem Point".
Eu.ModSt.7745 | Info Roles at the association ends represent the used “Interface kind” such as SCI-LS, SMI-LS and so on. In Figure 2134 "Subsystem Point" sees for example "Subsystem Electronic Interlocking" in the role of "SCI-P" and vice
versa.
Eu.ModSt.7882 | Info Figure 2134 therefore includes for example the following related definitions:

¢ the interface between "Subsystem Point" and "Subsystem Electronic Interlocking" must be implemented according to the specification of "SCI-P".

¢ the interface between "Subsystem Point" and "Subsystem Maintenance and Data Management" must be implemented according to the specification of "SMI-P".
¢ the interface between "Subsystem Point" and "Subsystem Maintenance and Data Management" must be implemented according to the specification of "SDI-P".
¢ the interface between "Subsystem Point" and "Subsystem Security Services Platform" must be implemented according to the specification of "SSI-P".

© EULYNX Partners

Page 75 of 120

Modelling Standard

ID Type Requirements
Eu.ModSt.2134 | Info
Figure 2134 Example of SUS model view "Logical Context"
bdd [Package] Subsystem Point - Logical Context [Logical Viewpoint - Subsystem Deﬁnitiun]]
«logical structural entity»
«logical structural entitys Subsystem Point
Subsystem Electronic 1 1
Inteﬂocking_@ SCHP - scIP
«logical structural entity»
Subsystem Security Services 1 1
Platform S51-P sg1p
1 @ 1 = |«environmental structural entity»
_ _ — Point machine
«logical structural entity» 1 1 P3 P3 5
Subsystem Maintenance and |)P SMI-P
DataManagement 1 1
SDI-P SDI-P
«environmental structural entitys | 4 1
Basic Data Identifier P4 P4
«environmental structural entity» | 4 1 1 1 |«environmental structural entity»
Maintainer = o =y - Power Supply
Eu.ModSt.377 | Head | 8.3.6 Model view "Logical Context" of a SUS (AL1) - Modelling rules
Eu.ModSt.378 | Head | 8.3.6.1 SysML diagram
Eu.ModSt.379 | Info Block definition diagram (BDD): depicts the view "Logical System Context".
Eu.ModSt.3560 | Info Name of the Diagram:
bddfPackage]<><System block signature><>-<>Logical Context<>[Logical Viewpoint<>-<>Subsystem Definition].
Eu.ModSt.383 | Info Example:
bdd [Package] Subsystem Light Signal - Logical Context [Logical Viewpoint - Subsystem Definition]
Eu.ModSt.385 | Head | 8.3.6.2 Model elements
Eu.ModSt.890 | Info The model elements basically used to describe the model view "Logical Context" are depicted in Figure 2134.
Eu.ModSt.386 | Info Block: Modular unit of structure in SysML that is used to define the Logical Structural Entity (LSE) or Environmental Structural Entity (ESE) representing the logical view of the SUS or the actors at the uppermost level of
abstraction.
Eu.ModSt.1184 | Info Naming conventions for blocks representing LSEs:
<System block signature> := <Abbr. System ID> | <System ID>
Eu.ModSt.1186 | Info <Abbr. System ID> := <Abbr. System type><><Abbr. System name>

© EULYNX Partners

Page 76 of 120

Modelling Standard

ID Type Requirements
Eu.ModSt.1212 | Info <Abbr. System type> := "Sys" | "SubS" | "SysElem"
Eu.ModSt.1213 | Info <Abbr. System name> := freely selectable
Eu.ModSt.1188 | Info Examples:
Sys ABB
SubS LS
SysElem 1
Eu.ModSt.1185 | Info <System ID> := <System type><><System name>
Eu.ModSt.1214 | Info <System type> := "System" | "Subsystem" | "System Element"
Eu.ModSt.1215 | Info <System name> := freely selectable
Eu.ModSt.1187 | Info Example:
System ABB
Subsystem Light Signal
System Element 1
Eu.ModSt.1252 | Info If there are project-specific commitments, a deviating designation of <System block signature> may be used.
Eu.ModSt.1189 | Info The modeller must ensure that the descriptions of the functional (Functional Viewpoint) and logical (Logical Viewpoint) representations of actors and SUS match.
Eu.ModSt.391 | Info Actor: At the Functional Viewpoint (model view "Functional Context"), an actor may be a class of users, roles users can play, or other systems. Cockburn [22] distinguishes between primary and secondary actors.
Eu.ModSt.740 | Info A primary actor is one having a goal requiring the assistance of the system.
Eu.ModSt.741 | Info A secondary actor is one from which the system needs assistance.
Eu.ModSt.392 | Info Depiction of an actor:
At the logical viewpoint, however, the actors defined in the model view "Functional Context" are represented as parts of the logical overall system architecture. They are represented by logical structural entities if they are in
the context of a system element belonging to the same overall system. If an actor in the context of a SUS is outside of the overall system of this SUS (adjacent system) it is represented by an environmental structural
entity.
Eu.ModSt.394 | Info Association: specifies the structural relationship between a block, i.e. the SUS and an actor. It represents a logical interface (see also chapter 8.3.5)
Eu.ModSt.395 | Info Depending on the direction of the information flow, the association has to be stated bi-directional or uni-directional.
Eu.ModSt.396 | Info At the actor's side of an association, the multiplicity that defines the required quantity of each actor and the name of the logical interface has to be stated.
Eu.ModSt.397 | Info At the block's side of an association, the multiplicity "1" and the name of the logical interface has to be stated.
Eu.ModSt.1191 | Info Naming conventions for interfaces:
<Interface kind> := <Abbr. Type of interface>-<Interface ID>
Eu.ModSt.1192 | Info <Abbr. Type of interface> := S*)CI | S*)Freely selectable | Freely selectable
S*)CI: Communication interface
S*)Freely selectable: Standardised Interface except SCI
Freely selectable: any non-standardised interface
*) "S" indicates that the interface is standardised
Eu.ModSt.1193 | Info <Interface ID> := Freely selectable designator (as far as a generic interface is concerned, “Gen” or "XX"is to be used as Interface ID)
Eu.ModSt.1194 | Info Examples:
SCI-P, SMI-LS, SDI-LS, SCI-Gen, SCI-XX
Eu.ModSt. 1286 | Info If the interface kind is used within the executable part of the model, where hyphens <-> are forbidden, an underscore <_> is to be used between <Abbr. Type of interface> and <Interface ID>.
Eu.ModSt.1287 | Info Examples:
SCI_P, SMI_LS, SDI_LS, SCI_Gen, SCI_XX
Eu.ModSt. 1896 | Info If there are project-specific commitments, a deviating designation of <Interface kind> may be used.

© EULYNX Partners

Page 77 of 120

Modelling Standard

ID Type

Requirements

Eu.ModSt.7746 | Head

8.3.6.3 Binding (see chapter 8.2.1)

Eu.ModSt.7752 | Info

Diagram of model view "Logical Context" has a "Def" binding.

Eu.ModSt.7718 | Head

8.3.7 Model view "Functional Partitioning" of a SUS (AL2) - Description

Eu.ModSt.7721 | Info

The model view "Functional Partitioning" shown in Figure 7723 describes the refinement of the SUS (1) by FEs.

Eu.ModSt.7849 | Info

The FEs (2) defined in the SIUS model view "Functional Partitioning" (see chapter 8.4.3), which represent the local behaviours of the PDI (see chapter 8.2.4), and the generic FEs (3) are referenced by the SUS through
reference associations (5). FEs which are assigned to the subsystem via reference associations (marked with a white diamond) are not part of the subsystem, but are only used there. They represent the local behaviour of
the PDI of the corresponding SIUS and are part of it.

Eu.ModSt.7850 | Info

The SUS-specific FEs (4) are part of the SUS which is represented by composite associations (6). FEs which are assigned to the subsystem via composite associations, i.e. so-called whole-part relationships (marked with a
black diamond) are part of the subsystem. They represent the specific behaviour of the subsystem that influences more than one interface. This so-called "linking behaviour" is also used to link the behaviour assigned to the
interfaces.

Eu.ModSt.7851 | Info

The model view "Functional Partitioning" forms the basis for the model view "Functional Architecture" (see chapter 8.3.9). It defines the FEs in their maximum quantity structure in the form of multiplicities. Within the
framework of this quantity structure, the FE configurations required for the definition of the functional requirements are then created in the model view "Functional Architecture".

© EULYNX Partners

Page 78 of 120

Modelling Standard

ID Type Requirements
Eu.ModSt.7723 | Info
Figure 7723 Example of SUS model view "Functional Partitioning"
bad Subsysten Foint- Functional Fartitoning [Furctional Viewpoint - Subsystem Reguimments
Subsystem Paint-Furctional

SCHP- Functional Viewsont | D
Eu.ModSt.7719 | Head | 8.3.8 Model view "Functional Partitioning" of a SUS (AL2) - Modelling rules
Eu.ModSt.7780 | Head | 8.3.8.1 SysML diagram
Eu.ModSt.7781 | Info Block Definition Diagram (bdd): depicts the model view "Functional Partitioning".
Eu.ModSt.7782 | Info Diagram heading:

bddfPackage]<><System block signature> <>->Functional Partitioning<> [Functional Viewpoint - Subsystem Requirements]

© EULYNX Partners

Page 79 of 120

Modelling Standard

ID Type Requirements

Eu.ModSt.7783 | Info Example:

bdd [Package] Subsystem Point- Functional Partitioning [Functional Viewpoint - Subsystem Requirements]
Eu.ModSt.7811 | Head | 8.3.8.2 Model Elements
Eu.ModSt.7812 | Info Remains free for the time being.
Eu.Modst.7843 | Head | 8.3.8.3 Binding (see chapter 8.2.1)
Eu.ModSt.7852 | Info Diagram of model view "Functional Partitioning" has a "Def" binding.
Eu.ModSt.7028 | Head | 8.3.9 Model view "Functional Architecture" of a SUS (AL2) - Description
Eu.ModSt.7029 | Info Figure 7755 shows the model view "Functional Architecture" (FA) of Subsystem Point. It is created based on the in model view "Functional Partitioning" defined FEs.
Eu.ModSt.7755 | Info

Figure 7755 Model view "Functional Architecture" of Subsystem Point

-

e
" e i sawtive

Eu.ModSt.7756 | Info The model view "Functional Architecture" is explained in the following with a simple example as shown exemplarily in Figure 7031. It describes the external visible stimulus-response behaviour of a SUS (1) represented by a

Logical Structural Entity (LSE) that is structured in a way that enables an interface centric specification approach as described in chapter 8.2.4. The behaviour of the SUS is divided into Functional Entities" (FE), which
communicate with each other via internal interfaces and with the environment via external interfaces.

© EULYNX Partners

Page 80 of 120

Modelling Standard

ID Type Requirements

Eu.ModSt.7033 | Info Functional Entities
To describe the overall behaviour of an SUS observable externally in an FA structured, two different representations of the FEs (4, 5) are used: FEs with a solid border (5) and FEs with a dashed border (4). Following the
interface centric specification paradigm explained in chapter 8.2.4, a solid-bordered FE represents the directly specified behaviour of the SUS that is the "linking behaviour" (e.g. S_P : S_P). It is an inseparable part of the
SUS behavioural model. FEs with dashed borders, on the other hand, are references (reference properties) to the interface protocols specified in the models of the application levels. These local behaviours are linked to the
overall behaviour of the SUS by the directly specified SUS linking behaviour. The model view "Functional Entity" is described in chapter 8.5 and chapter 8.6.

Eu.ModSt.7759 | Info In Figure 7031, for example, the functional entity ":S_SCI_P_Command_and_Receive" is shown as a dashed block. This means that it is the local behaviour of the SCI-P protocol at application level, which is defined in the
SCI-P specification (see chapter 8.4).

Eu.ModSt.7037 | Info Internal FE-coupling
Internal FE-couplings are implemented in two variants. In variant 1 (6), communication between two FEs takes place by means of signals and in variant 2 (7), permanent information is transmitted.

Eu.ModSt.7038 | Info Variant 1 (6): an internal FE-coupling according to variant 1 defines an event-driven flow. It consists of two SysML proxy ports with the same name that are connected via a connector (SysML Connector). The connector
represents the communication channel over which the information objects defined in the port type (SysML interface block) such as "w_p" can be exchanged. The information objects are represented by SysML signals (see
chapter 8.7.4 and chapter 8.6.6.10.1). The port type is used conjugated on one side (e.g., ~w_p). This means that an information object defined as outgoing in the interface block (port type) becomes an incoming
information object through conjugation.

Eu.ModSt.7039 | Info Port name and port type are written in lower case. In addition, the ports are shown in the colour of the FEs.

Eu.ModSt.7040 | Info Variant 2 (7): an internal FE-coupling according to variant 2 defines a continuous flow. It consists of two SysML proxy ports or alternatively SysML flow ports with the same name that are connected via a connector (SysML
Connector). The continuity of the information transmission is indicated by the abbreviation "d = data" at the beginning of the names of the ports involved.

Eu.ModSt.7036 | Info The information flows defined in the internal FE-couplings or the couplings themselves are to be interpreted as descriptive elements of the behaviour and are only binding in the context of the overall behaviour. That
means that an information flow defined in an internal FE-coupling only becomes a mandatory requirement in the context of its active use, e.g. in a transition.

Eu.ModSt.7885 | Info Please note: In some cases, flow ports are still used to describe internal FE-couplings (see for example Figure 7755). However, these will gradually be replaced by proxy ports in the future.

Eu.ModSt.7041 | Info Ports used for internal FE-coupling are defined as functional ports. Their names are written in lower case. In addition, the ports are shown in the colour of the FEs.

Eu.ModSt.7043 | Info External FE-coupling
The overall behaviour to be implemented by the manufacturers is connected to the logical SUS interfaces (2) via external FE-couplings (3).

Eu.ModSt.7044 | Info An external FE-coupling consists of a proxy port representing a logical SUS interface, located at the SUS outer boundary and labelled with the designator of the interface concerned (e.g. SCI_P : SCI_P_Subsystem_EIL). The
proxy ports delegated from the FEs relevant to the interface using binding connectors (3) and representing the information flows (e.g. P11in : ~SCI_P_2 or P10inout : SCI_P_1) are embedded in it (9).

Eu.ModSt.7860 | Info In other words, the port (e.g. P10inout : ~SCI_P_1) at the FE is duplicated on the SUS outer boundary. Both ports are connected with a binding connector. The information flows and their direction remain unchanged in the
interface block of the duplicated port.

Eu.ModSt.7045 | Info The names of the proxy ports used in an external coupling (e.g. P11in or P10inout) designate the information flows assigned to the logical SUS interface. The port types (e.g. SCI_P_2 or SCI_P_1) define the information
objects of the information flows that must be able to be exchanged via the respective interface.

Eu.ModSt.7861 | Info The information objects defined in the information flows or the couplings themselves are to be interpreted as descriptive elements of the behaviour and are only binding in the context of the overall behaviour. That means
that an information object defined in an external FE-coupling only becomes a mandatory requirement in the context of its active use, e.g. in a transition.

Eu.ModSt.7884 | Info Please note: In some cases, flow ports are still used to describe external FE-couplings (see for example interface P3 in Figure 7755). However, these will gradually be replaced by proxy ports in the future.

Eu.ModSt.7046 | Info Ports used for external FE-coupling are defined as logical ports. Port name and port type are written in capital letters. In addition, the ports are shown in the colour blue.

Eu.ModSt.7049 | Info Open ports
Open ports (8) that is ports not associated to connectors define interfaces to specification parts not contained in the model, i.e. expected behaviour in the environment of the FEs. This behaviour can be implemented
proprietarily by each manufacturer, as long as the information expected at the ports is provided or the information delivered via the ports is processed accordingly.

Eu.ModSt. 7762 | Info Ports used as open ports are defined as logical ports. Port name and port type are written in capital letters. In addition, the ports are shown in the colour blue.

Eu.ModSt.7050 | Info Open ports are also used to configure the specified behaviour.

Eu.ModSt.7030 | Info Please note: The FA is not to be understood as a specification for an internal architecture of the SUS, but as a descriptive structuring. The FEs in communication relationship represent the expected overall behaviour of a

SUS, which must be fulfilled by the respective manufacturer in its entirety.

© EULYNX Partners

Page 81 of 120

Modelling Standard

ID Type Requirements
Eu.ModSt.7031 | Info
Figure 7031 Example of SUS model view "Functional Architecture"
ibd [Block] Subsystem Electronic Interlocking [Functional Viewpoint - Subsystem Requirements - Functional Architecture]J
(D «blocks
«logical structural entitys
Subsystem Electronic Interlocking
SCI_CC : 5C1_CC_Subsystem_EIL SCIP :SCI_P_Subsystem_EIL
Plinout: ~SCI_CC_1 N
«cequals P1lin: ~SCI_P_2
aequaly

@ aequals 9)
Fl0inout: -SCI_P_1

Eu.ModSt.1800 | Head | 8.3.10 Model view "Functional Architecture" of a SUS (AL2) - Modelling rules

Eu.ModSt.1813 | Head | 8.3.10.1 SysML diagram

Eu.ModSt.1832 | Info Internal Block Diagram (ibd): depicts the model view "Functional Architecture".

Eu.ModSt.1833 | Info Diagram heading:
fbd[Block]<><System block signature><>[Functional Viewpoint<>-<>System Requirements<>-<>Functional Architecture]

Eu.ModSt.1834 | Info Example:
ibd[Block] Subsystem Electronic Interlocking[Functional Viewpoint-System Requirements-Functional Architecture]

Eu.ModSt.7758 | Head | 8.3.10.2 Model elements

Eu.ModSt. 7763 | Info Block: Modular unit of structure in SysML that is used to define the Logical Structural Entity (LSE) representing the SUS at the Logical Viewpoint and the Functional Entities (FE) in the form of parts and reference
properties.

Eu.ModSt.7764 | Info Part: Parts (5) describe composition relationships between blocks. A composition relationship is also called a whole-part relationship. Thus, the parts used in a Functional Architecture of a SUS describe the composition
relationships between the LSE and the corresponding FEs representing linking behaviour as introduced in chapter 8.2.4.

Eu.ModSt.7857 | Info Reference properties: Reference properties (4) enable an instance of a block that contains the reference property to refer to an instance of the block which types the reference property. They can be used to describe a
logical hierarchy that references blocks that are part of other composition hierarchies. Reference properties are depicted in a similar fashion to parts when shown on the internal block diagram, except that their box symbol
has a dashed instead of a solid boundary. In the model view "Functional Architecture" of a SUS reference properties represent FEs which are references to the local behavioural parts of the interface application protocol as
defined in model view "Functional Architecture" of the SIUS (see chapter 8.4.5).

Eu.ModSt.1137 | Info Part/reference property signature := <MName of the part/reference property>.:<FE_TFE block signature>

Eu.ModSt.694 | Info Name of the part/reference property := 1) | 2) | 3)

1) A part/reference property is not named when the type (FE_TFE block signature) provides sufficient information to infer the role the part plays in the context of the Functional Architecture.
2) A part/reference property is given a name (Freely selectable designator) when the type (FE_TFE block signature) does not adequately describe the role the part plays in the context of the Functional Architecture.
3) A part/reference property is given a name (Freely selectable designator) when it is used within a SySim simulation.
Eu.ModSt.7858 | Info Example:
SP:SP

:S_SCI_P_Command_and_Receive

© EULYNX Partners

Page 82 of 120

Modelling Standard

ID Type Requirements

Eu.ModSt.7765 | Info Connector: SysML connectors (6,7) are used to model the connections between parts or reference properties. Thus, they specify the communication-channels between the ports of FEs.

Eu.ModSt.7766 | Info Whereas an out port of a FE may be connected to no connector or an infinite number of connectors, an in port may be connected to either no connector or only one connector, but must not be connected to more than one
connector.

Eu.ModSt.7859 | Info Binding Connector: A binding connector (3) is a special kind of connector that constrains its ends to have the same value. It is used, among other things, to bind proxy ports to parts or reference properties. For example,
the value of the proxy port "P11in: ~SCI_P_2" (9) at the SUS interface (2) in Figure 7031 corresponds to that of the port of the same name of the FE ":S_SCI_P_Command_and_Receive". A binding connector is shown
using the connector notation, except that the connector path optionally has the keyword <<equal>> shown near its centre.

Eu.ModSt.7862 | Info Designator of a logical SUS interface := <Interface kind><>:<><Signature of Interface block aggregating information flows>

Eu.ModSt.7863 | Info <Signature of Interface block aggregating information flows> := <Interface kind>_<System block signature>

Eu.ModSt.7865 | Info <Interface kind>: see chapter 8.3.6.2 (Example: SCI_P)

Eu.ModSt. 7867 | Info <System block signature>: see chapter 8.3.6.2 (Example: Subsystem_EIL)

Eu.ModSt. 7864 | Info Example of a designator of a logical SUS interface:

SCI_P : SCI_P_Subsystem_EIL

Eu.ModSt.7868 | Info Designator of an Information flow := P<PNo><Port direction>_<Port information><>:<><Signature of Interface block aggregating information objects>

Eu.ModSt.7869 | Info <PNo>, <Port direction>, <Port information> are defined in chapter 8.6.5.2.

Eu.ModSt.7870 | Info <signature of Interface block aggregating information objects> := <Interface kind>_<IFNo>

Eu.ModSt.7871 | Info Information flow number (IFNo): natural number

Eu.ModSt.7872 | Info Example:

P1lin : SCI_P_2
P10inout : SCI_P_1
Plinout : SCI_CC_1

Eu.ModSt.7948 | Info Please note: Regarding the use of flow ports, flow specifications and flow properties see Eu.Doc.30 v3.0(2.A).

Eu.ModSt.7760 | Head | 8.3.10.3 Binding (see chapter 8.2.1)

Eu.ModSt.7761 | Info Diagram of model view "Functional Architecture" has a "Def" binding.

Eu.ModSt.7197 | Info Ports have a "Def" binding.

Eu.ModSt.7945 | Info Flow specifications have an "Info" binding.

Eu.ModSt.7946 | Info FLow properties of the flow specifications have a "Def" binding if they are further refined elsewhere (e.g. by linked telegram definitions in separate interface specifications or further requirements in chapter 5.X. of the
subsystem requirements specification in the requirements management tool).

Eu.ModSt.7947 | Info FLowProperties of the FlowSpecifications have a "Req" binding if they are not further refined elsewhere.

Eu.ModSt.7186 | Head | 8.3.11 Model view "Technical Functional Architecture" of a SUS (AL2) - Description

Eu.ModSt.7193 | Info Figure 7194 shows the engineering path of the model views used to specify a SUS at the Technical Viewpoint on abstraction level AL2.

© EULYNX Partners

Page 83 of 120

Modelling Standard

ID Type Requirements

Eu.ModSt.7194 | Info
Figure 7194 Engineering path to specify a SUS at the Technical Viewpoint on abstraction level AL2

AM MBSE: Engineering path SUS

Functional Viewpoint Technical Viewpoint

§ e S 35

Functional Architecture - :

(Internal block diagram) g — . .
Technical Functional Entity
(Internal block diagram)

| I
i
I
i
i
aE e .

— &

————— .
™ T T

Lo 1
B e

— 1 f I e T
: e i, ..._. T
: L -y P
Technical Functional Architecture (Internal I =
block diagram) == =
| - ol ey TR -

| Behaviour of Technical Functional Entity
(e.g.. State machine diagram)

Eu.ModSt. 7767 | Info The model view "Technical Functional Architecture" (TFA) supplements or substitutes the behaviour described in the model view "Functional Architecture", which is independent of technology, with behavioural components
derived from technical requirements. In other words, the FEs interconnected in the model view "Functional Architecture" are either transferred to the model view "Technical Functional Architecture" or completely or partially
replaced by Technical Functional Entities (TFE).

Eu.ModSt.7769 | Info The SUS can either be described completely from a technical point of view (all FEs are replaced by TFES) or only certain parts of it (interconnection of TFEs and transferred FEs).

Eu.ModSt.7192 | Info Figure 7188 shows an example of the transfer of the FES defined in the model view "Functional Architecture" to the model view "Technical Functional Architecture" of the SUS Subsystem Point. The SUS (1) is represented
by a Technical Structural Entity (TSE). The transferred FEs (5) are supplemented with the TFE "F_Control_And_Observe_4W_PM" (3) that describes the functionality of the four-wire interface to a point machine based on
technical requirements.

Eu.ModSt.7189 | Info In model view "Technical Functional Architecture" TFEs are coupled with each other, with the already defined FEs (6) and with the environment (4) via external technical functional interfaces (2).

Eu.ModSt.7886 | Info The overall behaviour of a SUS structured by a TFA can be divided into several TFAs in the graphical representation.

Eu.ModSt.7887 | Info Technical Functional Entities

To describe the overall behaviour of an SUS observable externally in an TFA structured, two different representations of the TFEs are used: TFEs with a solid border (3) and TFEs with a dashed border. Following the
interface centric specification paradigm explained in chapter 8.2.4, a solid-bordered FE represents the directly specified behaviour of the SUS that is the "linking behaviour". It is an inseparable part of the SUS behavioural
model. TFEs with dashed borders, on the other hand, are references (reference properties) to the interface protocols specified in the models of the application levels. These local behaviours are linked to the overall
behaviour of the SUS by the directly specified SUS linking behaviour. The model view "Technical Functional Entity" is described in chapter 8.5 and chapter 8.6.

Eu.ModSt.7888 | Info Internal TFE-coupling and external TFE-coupling
The definitions for internal FE-coupling and external FE-coupling in chapter 8.3.9 apply accordingly.

Eu.ModSt.7889 | Info Ports used for external TFE-coupling and internal TFE-coupling are defined as technical functional ports. They are shown in the colour yellow (4).

Eu.ModSt.7890 | Info Ports used for internal coupling of FEs with TFEs are functional ports. They are shown in the colour green (6).

Eu.ModSt.7891 | Info Ports representing technical functional SUS interfaces (2) can only be connected to technical functional ports (4).

Eu.ModSt.7892 | Info Open ports
Open ports that is ports not associated to connectors define interfaces to specification parts not contained in the model, i.e. expected behaviour in the environment of the TFEs. This behaviour can be implemented
proprietarily by each manufacturer, as long as the information expected at the ports is provided or the information delivered via the ports is processed accordingly.

Eu.ModSt.7893 | Info Ports used as open ports are defined as logical ports. Port name and port type are written in capital letters. In addition, the ports are shown in the colour blue.

© EULYNX Partners Page 84 of 120

Modelling Standard

ID Type Requirements
Eu.ModSt.7883 | Info Please note: The TFA is not to be understood as a specification for an internal architecture of the SUS, but as a descriptive structuring. The TFEs or FEs in communication relationship represent the expected overall
behaviour of a SUS, which must be fulfilled by the respective manufacturer in its entirety.
Eu.ModSt.7188 | Info
Figure 7188 Example of SUS model view "Technical Functional Architecture"
Ibd [Biock] Subsysiem Peint 4 Wire P W [Technical Vie - Subsysiem Aequirements - Technical Functional Archite clure
@ atechnicalsirucuralentiys
Subsystem Point 4 Wire PMUF
N -
d5lin_EST_EfeS_State) J
O
@
Eu.ModSt.7301 | Info | 8.3.12 Model view "Technical Functional Architecture" of a SUS (AL2) - Modelling rules
Eu.ModSt.7303 | Head | 8.3.12.1 SysML diagram
Eu.ModSt.7304 | Info Internal Block Diagram (ibd): depicts the model view "Technical Functional Architecture"
Eu.ModSt.7305 | Info Diagram heading:
ibd[Block]<><System block signature><>[Technical Viewpoint<>-<>Subsystem Requirements<>-<>Technical Functional Architecture]
Eu.ModSt.7306 | Info Example:
ibd [block] Subsystem Point 4 Wire PM I/F [Technical Viewpoint - Subsystem Requirements - Technical Functional Architecture]
Eu.ModSt.7307 | Head | 8.3.12.2 Model elements
Eu.ModSt.7308 | Info Block: Modular unit of structure in SysML that is used to define the TSE representing the technical manifestation of the SUS.
Eu.ModSt.7310 | Info Please note: For the remaining model elements, the definitions in chapter 8.3.10.2 apply accordingly.

© EULYNX Partners

Page 85 of 120

Modelling Standard

ID Type

Requirements

Eu.ModSt.7330 | Head

8.3.12.3 Bindings (see chapter 8.2.1)

Eu.ModSt.7333 | Info

Diagram of model view "Technical Functional Architecture" has a "Def" binding.

Eu.ModSt.7335 | Info

Ports have a "Def" binding.

Eu.ModSt.7336 | Info

Technical functional SUS interface has a "Req" binding if it is not further specified in a refined model view or in the form of a separate requirement.

Eu.ModSt.2486 | Head

8.4 Model views used to specify EULYNX interfaces

Eu.ModSt.2238 | Info

Model view "Logical Context": Block Definition Diagram (bdd)
The model view "Logical Context" describes the logical view of an interface at the upper level of abstraction.

Eu.ModSt.2239 | Info

Model view "Functional Partitioning": Block Definition Diagram (bdd)
The model view "Functional Partitioning" describes the refinement of the interface defined in model view "Logical Context" using Functional Entities.

Eu.ModSt.2240 | Info

Model view "Functional Architecture": Internal Block Diagram (ibd)
The model view "Functional Architecture" defines the global behaviour of the application protocol (see chapter 8.2.4).

Eu.ModSt.2241 | Info

Model view "Functional Entity": Internal Block Diagram (ibd) and State Machine (stm)

The model view "Functional Entity" encapsulates a subset of the functional requirements of an SUS in the form of a function module. It delimits the function module from its environment and defines the inputs and outputs.
In the discrete case, the behaviour of the function block is described by means of state machines. In this, the binding functional requirements are specified in the form of states and corresponding state transitions. As the
model view "Functional Entity" is used for the specification of EULYNX system elements as well as for the specification of EULYNX interfaces it is described in the separate chapter 8.5 and chapter 8.6.

Eu.ModSt.2242 | Info

Model view "Information Flow": Block Definition Diagram (bdd)

The model view ,Information Flow" describes the information objects to be exchanged via an interface which are further refined to telegrams at abstraction level AL3. At present, the telegrams are not yet described in a
model-based way. They are defined in the interface specifications (e.g. Interface Specification SCI-P, Eu.Doc.38).

Eu.ModSt.2243 | Info

Figure 2244 shows the engineering path of the model views used to specify a SIUS considering the Functional Viewpoint and the Logical Viewpoint. It describes the context of the model views, with the arrows indicating
which model views are developed from which. Based on the definition of the logical SUS interfaces in model view "Logical Context" of the SUS (a: see Figure 2129in chapter 8.3) the model views "Logical Context" and
"Functional Partitioning" of the corresponding SIUS are created. The model view "Functional Partitioning" in turn forms the basis for the creation of the model view "Functional Architecture" of the SIUS and the model view
"Functional Partitioning" of the SUS (b: see Figure 2129in chapter 8.3). Subsequently, the model views "Information Flow" and "Functional Entity" are created.

© EULYNX Partners

Page 86 of 120

Modelling Standard

ID Type Requirements
Eu.ModSt.2244 | Info
Figure 2244 Engineering path to specify a EULYNX interface
AM MBSE: Engineering path SIUS
Logical Viewpoint CSP
Engineering path SUS
&
" T {l]’
ALl el
I ' | m—— .
e, Logical Context
. (Block definition diagram)
I o
* fn =3 ﬂ
e —— Engineering - - 4 B vi
| = | path SUS I I’ ® T
. 2 1 —
SRS e (b)* e g o £
- 1 - -
Functional Architecture &4 . . SRS . -,
(Internal block diagram} Functional Partitioning e
A Lz : g e (Block definition diagram) _ E
= = "
== = P . ST e
ES 4-" A i
Information Flow FE |b| kd [F= = : E 5.;‘:'“““:“:'“ EE J
] i I L eg., ate machme diagram
(Block definition diagram) (nlﬁrl? ok Sai) @ -
Eu.ModSt.7229 | Head | 8.4.1 Model view "Logical Context" of a SIUS (AL1) - Description
Eu.ModSt.7230 | Info The model view "Logical Context" as shown in Figure 7231 describes the logical view of an interface at the upper level of abstraction. In contrast to the logical context of a SUS in which the logical interfaces are also defined
in terms of their number, an interface in its logical context is regarded as a one-to-one relationship.
Eu.ModSt.7233 | Info An interface (1) is generally defined as a unique connection between two communication participants (5). From the logical viewpoint at the upper level of abstraction an interface is represented by a SysML association
(1). An association is depicted as a continuous line between the communication participants. It also represents the possible interaction directions of the interface. No arrow heads means that the interaction is bidirectional.
An arrow head on the other hand indicates that an interaction is only possible in the direction of the arrow. It represents the requirement that the two communication participants must be able to interact with each other.
Eu.ModSt.7235 | Info The logical interface represented by an association (1) is linked to a SysML association block (3), which serves to refine the relationship. The global behaviour of the application protocol (Railway Control Protocol: RCP) is
then specified in this later in the model view "Functional Architecture".
Eu.ModSt.7237 | Info A defined set of information objects (information flow) is transmitted via the interface in a precisely defined temporal sequence (protocol) in many cases.
An information flow and the corresponding definition of the temporal sequence can apply to different interfaces. These two properties of an interface are called interface kind (4).
The interface kind is mapped at the association ends in the form of roles (4). This separation of interface and interface kind makes it possible to communicate in the same way via several different
"unique relationships = interfaces".
The interface kind represents the requirement that it is to be applied to a specific interface.
Eu.ModSt.7239 | Info An interface is identified by a unique name (2) placed above or below the association (1) representing the interface.
Eu.ModSt.7240 | Info The black arrow shown in connection with the association indicates the reading direction. The directional arrow specifies the top-level navigation through the interface model to improve readability. It is taken into account
when refining the model, for example when defining the conjugation of information flows. Beyond that, it has no meaning for the model.
Eu.ModSt.7241 | Info The interface name can be identical to the interface kind if it is certain that the interface kind is only applied to a specific interface and not to several different ones.

If the interface name is the same as the interface kind, it may not be displayed.

© EULYNX Partners

Page 87 of 120

Modelling Standard

ID Type Requirements

Eu.ModSt.7231 | Info
Figure 7231 Example of SIUS model view "Logical context"

bdd [Package] SCI-P - Logical Context [Logical Viewpoint - Interface Deﬂnitiun]J
«logical structural entity»
SCI.P 3
| Subsystem Point - Functional
Subsystem Electronic Interlocking : Architecture
elogical structural entitys 1 @ | SCI-P - 1| «logical structural entitys
Subsystem Electronic Interlockin Su m Point

e J/scip SCI-P Im?;"\

(5)

4) T

Eu.ModSt.1730 | Head | 8.4.2 Model view "'Logical Context" of a SIUS (AL1) - Modelling rules

Eu.ModSt.1732 | Head | 8.4.2.1 SysML diagram

Eu.ModSt.1733 | Info Block definition diagram (bdd): depicts the view Technical Connection Domain Context.

Eu.ModSt.1734 | Info Diagram heading:
bddfPackage]<><Interface name><>-<>Logical Context<>[Logical Viewpoint<>-<>Interface Definition].

Eu.ModSt.1735 | Info Example:
bdd SCI-P - Logical Context [Logical Viewpoint - Interface Definition]

Eu.ModSt.7238 | Head | 8.4.2.2 Model elements

Eu.ModSt.7784 Block: Modular unit of structure in SysML that is used to define the LSE representing the communication participants that is, the communicating subsystems (5).

Eu.ModSt.1364 | Info Association block (3): an association block is a combination of an association and a block, so it can relate two blocks together but can also have internal structure and other features. The internal structure can be used to
decompose the connector that is typed by the association block. Association blocks are shown on block definition diagrams as an association path with a block symbol attached to it via a dashed line.

Eu.ModSt.7786 | Head | 8.4.2.3 Bindings (see chapter 8.2.1)

Eu.ModSt.7787 | Info Diagram of model view "Logical Context" has a "Def" binding.

Eu.ModSt.2260 | Head | 8.4.3 Model view "Functional Partitioning" of a SIUS (AL2) - Description

Eu.ModSt.2261 | Info The model view "Functional Partitioning" as shown in Figure 2262 describes the refinement of the interface defined in model view "Logical Context" using Functional Entities. These Functional Entities specify the local
behaviours of the communication protocol stack scaled-down to the application layer (PDI: Process Data Interface Protocol) at each side of the communicating system elements.

Eu.ModSt.2264 | Info The specific (2) and generic (1) local behavioural parts of the application protocol defined by FEs are referenced by the communication partners via SysML reference associations (4). Reference associations are marked
with a white diamond and express that the FEs are not part of the subsystems, but are only used there. They are part of the PDI.

Eu.ModSt.7904 | Info The FEs are used in the model view "Functional Architecture" to specify the global behaviour of the application protocol represented by the internal structure of the association block (3) associated with the association
representing the interface.

© EULYNX Partners Page 88 of 120

Modelling Standard

ID Type Requirements
Eu.ModSt.2262 | Info
Figure 2262 Example of SIUS model view "Functional Partitioning"
bdd [Package] SCI-P - Functional Paditioning [Functional Viewpoint - Interface Requirements]J
«logical structural entitys
SCI.P
Subsystem Electronic Interlocking 3 ' Subsystem Point
|
_ |
«logical structural entity» 1 | SCI-P = 1 [«logical structural
Subsystem Electronic Interlocking -+ saP Subsystem Point
o O O ¢
1 1 1 1 1
Generic requirements for subsystems ("‘-—-"J
| -
SCI-P - Functional Viewpoint
Eu.ModSt.1359 | Head | 8.4.4 Model view "Functional Partitioning" of a SIUS (AL2) - Modelling rules
Eu.ModSt.1361 | Head | 8.4.4.1 SysML diagram
Eu.ModSt.1362 | Info Block Definition Diagram (bdd): depicts the model view "Functional Partitioning".
Eu.ModSt.1405 | Info Diagram heading:
bdd[Package]<><Interface name><>-<>Functional Partitioning<>/[Functional Viewpoint<>-<>Interface Requirements]
Eu.ModSt.1406 | Info Example:
bdd SCI-P - Functional Partitioning [Functional Viewpoint - Interface Requirements]
Eu.ModSt.1363 | Head | 8.4.4.2 Model elements
Eu.ModSt.1407 | Info Remains free for the time being.
Eu.ModSt.7796 | Head | 8.4.4.3 Bindings (see chapter 8.2.1)
Eu.ModSt.7797 | Info Diagram of model view "Functional Partitioning"” has a "Def" binding.
Eu.ModSt.2265 | Head | 8.4.5 Model view "Functional Architecture" of a SIUS (AL2) - Description
Eu.ModSt.2266 | Info The model view "Functional Architecture" as shown in Figure 2267 defines the global behaviour of the application protocol. The global behaviour is described by connecting the local behavioural components referenced by a

communication partner with the corresponding ones of the neighbour via communication channels.

© EULYNX Partners

Page 89 of 120

Modelling Standard

ID Type Requirements
Eu.ModSt.2269 | Info The description of the global behaviour of the application protocol is done by the internal structuring of the association block (1) defined in the model view "Functional Partitioning". In this process, the communication
partners (2), which in turn reference the local behavioural parts of the protocol represented by FEs (3), are referenced in the form of SysML participant properties and connected via their logical SUS interfaces (4) with
connectors (5).
Eu.ModSt.2267 | Info
Figure 2267 Example of SIUS model view "Functional Architecture"
ibd [Block] SCI-P - [Functional Viewpont - Intéface Requitements - Functional Mchilactmij
| :ml' ports I | m poits ;
[SCI_P - S0P Subsystem | SCHP - SCI_P_Subsystem_P :
|
I waquals sequals !
I
: Piincut : ~5CI ut : SCI_GEN !
|]
| I
| agquals wequals :
: Pgin - ~801 P 5C1LP_2 !
I
|
|]
]
: - ‘.w'h .ma" .
[Plout : ~5C1_P_ LP1 :
E o e e i e S e e e - R e s S e A At e T i e - e e M P P Ton i Al T e B e i Py A Sl o e e el e e e A~k A S R i e B i W
Eu.ModSt.7203 | Head | 8.4.6 Model view "Functional Architecture” of a SIUS (AL2) - Modelling rules
Eu.ModSt.1370 | Head | 8.4.6.1 SysML diagram
Eu.ModSt.1371 | Info Internal Block Diagram (ibd): depicts model view "Functional Architecture".
Eu.ModSt.1410 | Info Diagram heading:
ibd[Block]<><Interface name><>[Functional Viewpoint<>-<>Interface Requirements<>-<>Functional Architecture]
Eu.ModSt.1411 | Info Example:
ibd[Block] SCI-P [Functional Viewpoint - Interface Requirements - Functional Architecture]
Eu.ModSt.1372 | Head | 8.4.6.2 Model elements
Eu.ModSt. 1963 | Info Paricipant property: Participant properties are placeholders that represent the blocks at the end of an association block, and are used when it is desired to decompose a connector. A participant property is depicted as a
dashed box, like a reference property, but distinguished from other properties by the keyword <<participant>>.
Eu.Modst.7802 | Head | 8.4.6.3 Bindings (see chapter 8.2.1)
Eu.ModSt.7803 | Info Diagram of model view "Functional Architecture" has a "Def" binding.
Eu.ModSt.7909 | Info Ports have a "Def" binding.
Eu.ModSt.2270 | Head | 8.4.7 Model view "Information Flow" of a SIUS (AL2) - Description
Eu.ModSt.2271 | Info The model view "Information Flow" describes the information objects to be exchanged via an interface. It consists of the two sub-model views "Direction of Information Objects" and "Information Objects", which are shown

in Figure 7774 and Figure 2272 respectively.

© EULYNX Partners

Page 90 of 120

Modelling Standard

ID Type Requirements
Eu.ModSt. 7807 | Info As shown in Figure 7774, the SUS interfaces such as SCI_P are depicted by proxy ports. These are typified with interface blocks such as SCI_P_Subsystem_P (1), which represent information flows in the form of embedded
proxy ports such as P10inout. The embedded proxy ports are typed with interface blocks (2), which in turn contain the information objects (e.g. Cd_Move_Point).
Eu.ModSt.7774 | Info
Figure 7774 Example of SIUS model view "Information flow" - Direction of Information Objects
Model view “Functional Architecture”
£ pronys [! apfoxys
slagical poms | =kogical pors
SCI_P: SCI_P_Subsystem_EIL SCI-P': SCI_P_Subsystem_P
W [cequab
Pinout : S Piijouty SCI_GEN
_[1
4 }Eslou: SCI_P_2
bdd [Package] SCI-P - Irﬂunﬂi
sinterfaceBlocks
sinformation flows
SCI_P_Subsystem_EIL
proxyPorts
«ProxyPorts Plinout : SCI_GEMN
«ProxyPorts P3out : SCI_P_1
«ProxyPort» Pin : SCI_P_2
..--"'""' zinterfaceBlocks
«information flows @ vl sinformation flows
SCI_P_1 SCI_P_2
;pm'-r «signals Cd_Mave_Point |reqd «signals Msg_Point_Position
reqd «signals Msg_Ability_To_Move_Point
esignale Msg_Movement_Failed
Eu.ModSt.1376 | Info As shown in Figure 2272, the information objects are represented by SysML signals such as "Cd_Move_Point" (3). These signals can in turn have attributes such as "CommandedPointPositionState" (4) that represent

parameters of the information objects. The attributes are typed with basic data types or for example enumerations such as "PointPositionControlableState" (5).

© EULYNX Partners

Page 91 of 120

Modelling Standard

ID Type Requirements
Eu.ModSt.2272 | Info
Figure 2272 Example of SIUS model view "Information flow" - Information Objects
bdd [Fackage] SCI-P - Information Flows [Interface Requirements - Information Objects] J
g avalueType (enumeration)s 1
cd IImPnlnt @ ‘ | PointPositionControlable State
CommandedPointPositionState . PointPositionControlableStats) CommandedPointPositionState mLen @
: @ Right
evalueType (enumeration)s
PointPosition State
Point Position .
Msg_Point | ReportedFointPositionState Right.
ReportedPointPositionState : PointPositionState |NoEndPa-sl'|:n_
Rapudoﬂag‘adudpn'l'ﬂ:'nsiﬁm i FniniPnsitiunDegmdadSia‘ln ReportedDegradedPointPasition |Lﬁ'ﬂ!‘l’ﬂ8dpﬂﬂﬂﬂ..
avalueType (enumeration)s
. = PointPositionDegraded State
signal
Msg_Movement_Failed DegradadLeft
DegradedRight _
NotDegraded
ll'-id.ﬁ.ppic able _
P avalueType (enumeration)s
M_Aﬂlm_-?;_m_mm .: Ahi[tyTaMm'eStnta
ﬁﬂ[l.'ﬂt AL ilffnhl Stat Ahlﬁ'ﬁ' MoveState ReportedAbilityToMoveState AbeToMove
UnableTobdowe _
Eu.ModSt. 7842 | Info Please note: These model views can also be used in an adapted form to define the information flows for internal couplings between FEs or TFEs in a Functional Architecture or Technical Functional Architecture.
Eu.ModSt.7206 | Head | 8.4.8 Model view "Information Flow" of a SUS - Modelling Rules
Eu.ModSt.1379 | Head | 8.4.8.1 SysML diagram
Eu.ModSt.1380 | Info Block Definition Diagram (bdd): depicts the sub-model views "Direction of Information Objects" and "Information Objects" of model view "Information Flow".
Eu.ModSt. 1414 | Info Diagram heading (sub-model view "Direction of Information Objects"):
bddfPackage]<><Interface name><>-<><Information Flows><>[Interface Requirements<>-<>Dijrection of Information Objects
Eu.ModSt. 1378 | Info Diagram heading (sub-model view "Information Objects"):
bdd[Package]<><Interface name><>-<><Information Flows><>[Interface Requirements<>-<>Information Objects
Eu.ModSt.1417 | Info Example:
bdd[Package] SCI-P - Information Flows [Interface Requirements - Direction of Information Objects]
bdd[Package] SCI-P - Information Flows [Interface Requirements - Information Objects]
Eu.ModSt.1381 | Head | 8.4.8.2 Model elements
Eu.ModSt.1416 | Info Remains free for the time being.
Eu.ModSt.7099 | Head | 8.4.8.3 Bindings (see chapter 8.2.1)
Eu.ModSt.7106 | Info Diagram of model view "Information Flows - Direction of Information Objects" has a "Def" binding.
Eu.ModSt.7100 | Info Diagram of model view "Information Flows - Information Objects" has a "Def" binding.

© EULYNX Partners

Page 92 of 120

Modelling Standard

ID Type

Requirements

Eu.ModSt.7107 | Info

Information Objects (Signals) have a "Def" binding if they are further specified in a refined model view or in the form of a separate requirement.

Eu.ModSt.7905 | Info

Information Objects (Signals) have a "Req" binding if they are not further specified in a refined model view or in the form of a separate requirement.

Eu.ModSt.1249 | Head

8.5 Model views "Functional Entity" and "Technical Functional Entity" - Description

Eu.ModSt.7487 | Info

Within the EULYNX approach to specify model-based requirements the concept of Functional Entity (FE) and Technical Functional Entity (TFE) is used.

Eu.ModSt.7488 | Info

FE and TFE represent behavioural entities and encapsulate a subset of the functional requirements of a SUS or SIUS in the form of stimulus-response behaviour independent of any architectural constraints. While FEs define
technology-independent functional requirements, TFEs describe technology-dependent ones.

Eu.ModSt.7489 | Info

Please note: FEs and TFEs are not to be interpreted as elements of the hardware- or software architecture.

Eu.ModSt.7490 | Info

The stimulus-response behaviour of FEs and TFEs is defined by SysML state machines (see chapter 8.6.6).

Eu.ModSt.7491 | Info

The principle structure of a Functional Entity and a Technical Functional Entity is shown in Figure 7492.

Eu.ModSt.7492 | Info

Figure 7492 Example of a Functional Entity and a Technical Functional Entity

ibd [Block] 5_P' [Functional Viewpoint - Subsystern Requirements - Functional Entity]

ibd [Block] F_Control_And_Obserse_4W_PM [Technical Viewpoint - Subsystem Requirements - Technical Functional Enitity]

@ wtechnical functional entity»
F_Control_And_Observe_4W_PM

d51tn_F_EST_EfeS_Gen_EST_EfeS_State: Sting

D35in_Last_Targe!_Position: String
d19out_Ability_To_Move PM : String

di0out_PM_Postion: Siring

d21in_Move_Left_PM - Boolean
d22in_Move_Right_PM : Boolean

D250u_Detechon_VYoltage | Boolean
@ plinout: —oc W P3inout: w_p @ D26in_Drive_Voltage_Available: Boolean
o D24out_Dy Voltage_Right: Booke
D20in_Con_Drve_Capability: Boolean AL, ke e
p2inout : ~fs_w d3in_Point_Position [String : D27in_4W_Patiem- Stiing D23eu_Drve_Voltage_Left: Boolean

d2out_state Broadcast: [Boolean
Tlin_SiL_not_fulliled : Pulsedin

d45in_Con_Active : Boobean
D4in_Mormal_Mede IBoolean @
tdout_Timeout : PulsedOu - -

gfma_w : ~gfma_w
I
L

d2in_Required_Point_Position: String

Eu.ModSt.7493 | Info

Apart from state machines, FEs and TFEs may own
¢ SysML block properties (3),
¢ SysML block operations (2),
¢ SysML proxy ports used as atomic "in ports" and "out ports" (5, 6) or typed with an interface block in which the information objects to be exchanged via the port are defined (4, 7),
¢ SysML flow ports used as atomic "in ports" and "out ports" (8, 10).

Eu.ModSt.7494 | Info

The description of a FE (1) contains the stereotype <<functional entity>> as well as the FE name (e.g. S_W).

Eu.ModSt.7495 | Info

The description of a TFE (9) contains the stereotype <<technical functional entity>> as well as the TFE name (e.g. F_Control_And_Observe_4W_PM).

Eu.ModSt.7808 | Head

8.6 Model views "Functional Entity" and "Technical Functional Entity" - Modelling rules

Eu.ModSt.7829 | Info

The numbers (2) to (10) added in the following descriptions refer to Figure 7492.

Eu.ModSt.7809 | Head

8.6.1 SysML Diagram

Eu.ModSt.7815 | Info

Internal Block Diagram (ibd): depicts model views "Functional Entity" and "Technical Functional entity".

© EULYNX Partners

Page 93 of 120

Modelling Standard

ID Type Requirements
Eu.ModSt.7816 | Info Diagram heading - FE:
ibd[Block]<><FE_TFE block signature><>[Functional Viewpoint<>-<>Subsystem Requirements<>-<>Functional Entity|
Eu.ModSt.7817 | Info Diagram heading - TFE:
ibd[Block]<><FE_TFE block signature><>[Functional Viewpoint<>-<>Subsystem Requirements<>-<>Technical Functional Entity]
Eu.ModSt.7818 | Info Example:
ibd[Block] S_Point [Functional Viewpoint - Subsystem Requirements - Functional Entity]
ibd[Block] F_Control_And_Observe_4W_PM [Functional Viewpoint - Subsystem Requirements - Technical Functional Entity]
Eu.ModSt.7819 | Head | 8.6.2 Block
Eu.ModSt. 7820 | Info Block: Modular unit of structure in SysML that is used to define a FE or TFE
Eu.ModSt.7821 Block name: <FE_TFE block signature>
Eu.ModSt.7822 | Info Example:
S_P
F_Control_And_Observe_4W_PM
Eu.ModSt.906 | Info <FE_TFE block signature> := <Layer of LA modelling pattern >_ <Name of functionality>_<Operational entity>
Eu.ModSt.911 | Info <Layer of LA modelling pattern> :=C|S|F| ™
C: Command control layer,
S: Safety layer,
F: Field layer
"": if no layer is applicable
See chapter 8.2.2
Eu.ModSt.916 | Info <Name of functionality> :=1) | 2)[3)|4) | 5) | 6)
1) FE/TFE specifies the essential states of an operational entity (operating modes): EST
2) FE/TFE specifies the behaviour of an operational entity: <description of the functionality> (example: Control_And_Observe_4W_PM)
3) FE/TFE specifies local behaviour of the application protocol layer (RCP) assigned to a certain operational entity (see chapter 8.2.4):
<Interface name> (example: SCI_P) or
<Interface name>_<description of the functionality> (example: SCI_P_Report_Status)
4) FE/TFE specifies generic local behaviour of the application protocol layer (RCP):
<Abbr. Type of interface>_Gen (example: SCI_Gen)
<Abbr. Type of interface>_ <description of the functionality>_Gen (example: SCI_Check_Version_Gen)
5) FE/TFE specifies generic local behaviour of the application protocol layer (RCP) assigned to a certain group of operational entities:
<Abbr. Type of interface>_<Operational entity_Operational entity_..._ Operational entity>_Gen (example: SCI_LS_P_Gen) or
<Abbr. Type of interface>_<Operational entity_Operational entity_..._ Operational entity>_ <description of the functionality>_Gen (example: SCI_LS_P_Check_Version_Gen)
6) FE/TFE specifies generic local behaviour of the application protocol layer (RCP) assigned to a certain group of operational entities using a common designator:
<Abbr. Type of interface>_<group designator>_Gen (example: SCI_EfeS_Gen) or
<Abbr. Type of interface>_<group designator>_ <role of communication partner> (SCI_EfeS_Prim)
<Abbr. Type of interface>_<group designator>_ <description of the functionality>_Gen (example: SCI_EfeS_Check_Version_Gen)
<Abbr. Type of interface>_<group designator>_ <role of communication partner>_ <description of the functionality> (example: SCI_EfeS_Prim_Check_Version)
<group designator> := Freely selectable common designator (example: FE for field elements)
<role of communication partner> := freely selectable designator such as Prim (Primary) and Sec (Secondary)
Eu.ModSt.966 | Info <Operational entity>:=1)|2) | 3) | 4) | 5)
1) FE/TFE specifies the behaviour or the essential states of an operational entity: Name of the operational entity (vertical slice of the LA modelling pattern)
Examples: LS, P, SOR (start of route), EOR (end of route)
2) FE/TFE specifies generic behaviour or the essential states of an operational entity: Gen
3) FE/TFE specifies generic behaviour or the essential states assigned to a certain group of operational entities:
<Operational entity_Operational entity_..._Operational entity>_Gen (example: LS_P_Gen)
4) FE/TFE specifies generic behaviour or the essential states assigned to a certain group of operational entities using a common designator:
<group designator>_Gen (example: EfeS_Gen)
<group designator> := Freely selectable common designator (example: FE for field elements)
5) FE/TFE specifies the local behaviour of the application protocol layer (RCP): no operational entity
Eu.Modst.7810 | Head | 8.6.3 Model elements - Block properties

© EULYNX Partners

Page 94 of 120

Modelling Standard

ID Type Requirements
Eu.ModSt.7497 | Info Block properties (3) are to be interpreted in the sense of variables or constants that store values. They are prefixed with "Mem".
Examples: Mem_last_Target_Requested, Mem_Current_Point_Position.
Eu.ModSt.534 | Info Block properties are to be typed using the defined SySim value types.
Eu.ModSt.533 | Info All SysML block properties have to be initialised. The initialisation must be carried out in an init-operation using ASAL. This SysML block operation is systematically named cOp1_.init().
Eu.ModSt.7498 | Info The initialisation can be carried out in the body of the init-block operation systematically named cOp1_init(). Alternatively it can be carried out directly in the transition effect of the transition outgoing from initial state of the
state machine.
Example:
Mem_S_W_Position :="";
Mem_SW_Last_Position :="";
The assignments of values to the corresponding block properties are to be interpreted as definitions. They become mandatory requirements (binding character "Req") when they are used in a mandatory requirement, such
as a transition of a state.
Eu.ModSt.536 | Info Some reasons to use SysML block properties are given below. This is expressed by means of corresponding naming conventions:
Eu.ModSt.539 | Info Defining configuration data: Con_data-name (e.g. Con_t_ini_max)
Eu.ModSt.540 | Info <blockpropertyname> ::= <Con><mark> <propertyinformation>
<propertyinformation>::= <alphaNum> <remaininginformation>
<remaininginformation> ::= " | <alphaNum> <remaininginformation>
<Con>::= Con
<alphaNum>:=A[B| ... lzlalb|...[_]o]|..|9
<mark>::= _
Eu.ModSt.897 Info Defining site data: Site_data-name
Eu.ModSt.898 | Info <blockpropertyname> ::= <Site><mark><propertyinformation>
<propertyinformation>::= <alphaNum><remaininginformation>
<remaininginformation> ::= ,"|<alphaNum> <remaininginformation>
<Site>::= Site
<alphaNum> ::=A|B|..|Z]a|b|..]_]0]..]9
<mark>::= _
Eu.ModSt.537 | Info Caching a value (except the value of a port): Mem_value-identifier (e.g. Mem_signal_aspect_to_be_indicated)
Eu.ModSt.541 | Info Caching the value of a port: Mem_port-name (e.g. Mem_T6_Msg_defective)
Eu.ModSt.542 | Info <blockpropertyname> ::= <Mem><mark><port-name>
<Mem>::= Mem
<mark>::= _
Eu.ModSt.538 | Info <blockpropertyname> ::= <Mem><mark> <propertyinformation>
<propertyinformation>::= <alphaNum> <remaininginformation>
<remaininginformation> ::= " | <alphaNum> <remaininginformation>
<Mem>::= Mem
<alphaNum> :=A[B| ... lzlalb|...[_]o]|..|9
<mark>::= _
Eu.ModSt.7813 | Head | 8.6.4 Model elements - Block operations
Eu.ModSt.7500 | Info Block operations (2) are used in order to specify
¢ internal broadcast events or
¢ algorithms of data transformations defined in the operation body (call behaviour, time advance behaviour).
Eu.ModSt.7951 | Info The content of an operation defined in the operation body shall always be displayed in the requirements management tool in "Requirements Part 1" and the name of the operation must be noted above it as a comment.
The actual name of the operation, which comes from the model element, shall then be displayed in "Requirements Part 2".
Eu.ModSt.1011 | Info 8.6.4.1 Internal broadcast events
Eu.ModSt.545 | Info Internal broadcast events are supposed to submit broadcasts within the state machine of a FE/TFE.

© EULYNX Partners

Page 95 of 120

Modelling Standard

ID Type

Requirements

Eu.ModSt.550 Info

Naming of internal broadcast events
bc<Id>_<broadcast information>,
Example: bcl_indicate_signal_aspect.

Eu.ModSt.969 Info

Id: Natural number starting with 1

Eu.ModSt.548 Head

8.6.4.2 Definition of algorithms for data transformation

Eu.ModSt.549 Info

There are two types of behaviour that can be defined by means of SysML block operations:
¢ call behaviour and
¢ time advance behaviour.

Eu.ModSt.7823 | Head

8.6.4.2.1 Call behaviour

Eu.ModSt.7502 | Info

Block operations used to define call behaviour are prefixed with cOp<Id> where "Id" is a natural number starting with 1.

Eu.ModSt.7504 | Info

Call operations are used as

¢ boolean expressions or parts of it in change events: e.g. when(cOp3_No_End_Position)/
¢ transition guards: e.g. when(cOp5_Trailed)[cOp7_Is_Trailable]/
¢ transition effects: e.g after(D5in_Con_tmax_Point_Operation/cOp12_Timeout();

Eu.ModSt.7503 | Info

Call behaviour is invoked on demand, executed and terminated after execution. It is supposed to define event-driven data transformations. The algorithm of the data transformations is described in the body of the
corresponding block operation using the Atego Structured Action Language (see chapter 8.6.7).

Example: cOp2_All_Left
if cCOp8_Supports_Multiple_PMs() then
return (
(D21in_PM1_Position = "LEFT") and
(D22in_PM2_Position = "LEFT" or D13in_PM2_Activation= "INACTIVE")

)
else
return D21in_PM1_Position = "LEFT";
end if

Eu.ModSt.7505 | Info

The call operation to initialise the block properties and Out Ports of a FE is named cOp1_init() systematically.

Eu.ModSt.7506 | Info

Call operations are to be interpreted as definitions. They become mandatory requirements (binding character "Req") when they are used in a mandatory requirement, such as a transition of a state.

Eu.ModSt.1014 | Head

8.6.4.2.2 Time advance behaviour

Eu.ModSt.1015 | Info

Time advance behaviour is invoked once during system activation and executes continuously. It is supposed to define continuous data transformation. The algorithm of the data transformations is to be described in the
body of the corresponding block operation using the Atego Structured Action Language (see chapter 8.6.8).

Eu.ModSt.553 Info

Naming of time advance behaviour
tOp<Id>_<behaviour name>
Example: tOp1_indicate_availability_ratio

Eu.ModSt.1017 | Info

Id: Natural number starting with 1

Eu.ModSt.7814 | Head

8.6.5 Model elements - Ports

Eu.ModSt.7507 | Head

8.6.5.1 Atomic SysML in ports and out ports

Eu.ModSt.7508 | Info

A FE features interfaces that define the stimuli consumed by the assigned state machine, represented by atomic in ports, and responses generated by the assigned state machine, represented by atomic out ports.

Eu.ModSt.7509 | Info

In ports and out ports are specified as SysML proxy ports or SysML flow ports of the SysML block representing the FE/TFE depicted in an internal block diagram (ibd).

© EULYNX Partners

Page 96 of 120

Modelling Standard

ID Type Requirements

Eu.ModSt.7510 | Info In ports and out ports are described according to the port definition schema below:

<Port information type><PNo><Port direction>_<Port information>:<Data type>.

Eu.ModSt.7511 | Info Port information type

Used port information type:

¢ D or d: data ports (D-Ports),
¢ T or t: trigger ports (T-Ports).

Eu.ModSt.7512 | Info Data ports and trigger ports start with a small letter (such as d3in_Point_Position or t4out_Timeout) if they are part of an internal connection between two FEs or between a FE and a TFE. In this case they are referred to
as functional ports and have the colour green like the corresponding F E (5).

Eu.ModSt.7513 | Info Data ports and trigger ports start with a capital letter if they are part of an external connection between a FE and the system environment (system interface) or if it is an open port (such as D4in_ Normal_Mode or
T1in_SIL_not_fulfiled). In this case they are refered to as logical ports and have the colour blue (6).

Eu.ModSt.7514 | Info Data ports and trigger ports which are part of a connection between TFEs or a TFE and the system environment (technical system interface) are referred to as technical functional ports and have the colour Yellow (10).
They start with a small letter if they are part of an internal connection between two TFEs and with a capital letter if they are part of an external connection between a TFE and the system environment (technical system
interface).

Eu.ModSt.7515 | Info Data ports (5), (6)
Data ports are especially suited to indicate permanently available information. The value of a D-port only changes if it is explicitly changed.

Eu.ModSt.7516 | Info Data in ports are used as arguments of Boolean expressions in change events or transition guards. They may represent arguments in data transformations or other data, that need to be permanently reachable by the
behaviour of a FE (e.g configuration data: d21in_Con_Downgrade_Most_Restrict). Their values can be permanently regarded as valid.

Eu.ModSt.7517 | Info Data out ports are used to provide continuous data created within a FE for its environment (e.g. to be available for adjacent FEs, reachable via their data in ports).

Eu.ModSt.7518 | Info Trigger ports (8)
Trigger ports are especially suited to indicate singular events. They have a Boolean value that always enters false and only briefly changes to true when the event occurs (data types PulsedIn or PulsedOut). Afterwards the
value is automatically returned to false.

Eu.ModSt.7519 | Info Trigger in ports are mainly used as arguments of Boolean expressions in change events.

Eu.ModSt.7520 | Info Port number (PNo)
For each port of a FE/TFE with the port information type "D or d" or "T or t", a unique PNo is to be assigned in the format of a natural number. The ports need not be numbered consecutively.
For example port numbers like 1, 2, 3, 4, 5 are possible, but also 1, 3, 6.

Eu.ModSt.7521 | Info Port direction
The direction of the in Ports and out Ports are additionally defined, i.e. whether it is a stimulus or a response for the FE.

¢ An "in" after the port number represents a stimulus or a permanently present value,
¢ An "out" after the port number represents a response.

Eu.ModSt.7522 | Info Port information
The port information defines the information type and the semantic meaning of the information to be transmitted, e.g. "Cd_Indicate_signal_aspect".
<Port information> := <Information type> _ <Information>

Eu.ModSt.7523 | Info Information type: Msg (message), Cd (command), Con (configuration data), Site (site data) or project-specifically determined information types.

Eu.ModSt.7524 | Info Information: semantic meaning of the information to be transmitted, e.g. Indicate_signal_aspect.

Eu.ModSt.7525 | Info Data type
The data type which is assigned to any in port and out port is only shown on the diagram if it is necessary for a correct interpretation.

© EULYNX Partners Page 97 of 120

Modelling Standard

ID Type Requirements

Eu.ModSt.7526 | Info Initialisation of out ports
All data out ports are initialised. The initialisation can be carried out in the body of the init-block operation systematically named cOp1_init(). Alternatively it can be carried out directly in the transition effect of the transition
outgoing from initial state of the state machine. Trigger out ports are set to "FALSE" by default and are not explicitly initialised.
Example:
D25out_Redrive := FALSE;
The assignments of values to the corresponding out ports are to be interpreted as definitions. They become mandatory requirements (binding character "Req") when they are used in a mandatory requirement, such as a
transition of a state.

Eu.ModSt.7527 | Head | 8.6.5.2 SysML proxy ports to describe a signal-based communication

Eu.ModSt.7528 | Info A FE features interfaces that define event-driven in-flow of information consumed by the assigned state machine and event-driven out-flow of information generated by the assigned state machine.

Eu.ModSt.7529 | Info The information flows are represented by SysML proxy ports typed with SysML interface blocks (4, 7).

Eu.ModSt.7530 | Info The information objects to be exchanged are represented by signals. The interface blocks define the receptions for these signals.

Eu.ModSt.7531 | Info When a signal is received, a signal event is triggered by the corresponding reception, which is then used as a trigger for a state transition, for example.

Eu.ModSt.7824 | Info Proxy ports to describe a signal-based information flow are described according to the port definition schema below:

<Port information type><PNo><Port direction>_<Port information>:<Signature of Interface block aggregating information objects>.

Eu.ModSt.7825 | Info Port information type
Used port information type: P or p

Eu.ModSt.7532 | Info Ports and their interface blocks are written in small letter (such as plinout : ~cc_w) if they are part of an internal connection between two FEs. In this case they are referred to as functional ports and have the colour
green like the corresponding FE (4).

Eu.ModSt.7533 | Info Ports and their interface blocks are written in capital letters if they are part of an external connection (system interface) between a FE and the system environment (such as P3inout : W_P) or if they are open ports. In this
case they are referred to as logical ports and have the colour blue (7).

Eu.ModSt.7534 | Info Ports which are part of a connection between TFEs or a TFE and the system environment (technical system interface) are referred to as technical ports and have the colour yellow (10). They start with a small letter if
they are part of an internal connection between two TFEs and with a capital letter if they are part of an external connection between a TFE and the system environment (technical system interface) or if they are open ports.

Eu.ModSt.7535 | Info An information object defined as outgoing in the interface block (port type) becomes an incoming information object through conjugation. This conjugation is indicated by the character "~" preceding the corresponding
interface block (example: plinout : ~cc_w).

Eu.ModSt.7826 | Info Port number (PNo)
For each port of a FE/TFE with the port information type "P or p", a unique PNo is to be assigned in the format of a natural number. The ports need not be humbered consecutively.
For example port numbers like 1, 2, 3, 4, 5 are possible, but also 1, 3, 6.

Eu.ModSt.7827 | Info Port direction
The direction of the ports are additionally defined ("in", "out", "inout").

Eu.ModSt.7828 | Info Port information
Freely selectable and optional.

Eu.ModSt.7536 | Info Signature of Interface block aggregating information objects
The information flow through a proxy port is represented by an interface block in which the receptions for the incoming and outgoing information objects are defined. The information objects are represented by signals. The
use of interface blocks and signals is described in the chapters 8.4.7 (Model view "Information Flow"), 8.6.6.9.4 (Signal event) and 8.6.6.10. 1 (Event-driven responses using signals).

Eu.ModSt.7565 | Head | 8.6.6 Model elements - state machines

Eu.ModSt.7566 | Info In the following, the term "Functional Entity" and the corresponding abbreviation "FE" stand for both a FE and a TFE.

Eu.ModSt. 7567 | Info A FE is always in a state that abstracts a combination of values given in the FE. Events arriving at the FE lead to reactions - depending on the state - that change values of SysML out ports or SysML block properties, invoke

a local trigger or a call operation or send a signal via a port and result in new states.

© EULYNX Partners

Page 98 of 120

Modelling Standard

ID Type Requirements
Eu.ModSt.7568 | Info The state machine diagrams (see figure 7569) are children of the state machine and illustrate its behaviour, i.e. they describe the stimulus-response behaviour of a FE. The state machine contains states and state
transitions that are triggered by trigger in ports, data in ports, internal broadcast events, signal events as well as timing events. The state transitions represent the binding functional requirements of the system to be
specified.
Eu.ModSt.7830 | Info State Machine Diagram (STD): defines the behaviour of a FE.
Eu.ModSt.7934 | Info For each STD, a description must be inserted in the modelling tool (e.g. Properties ->Text->Description) that corresponds to a defined schema:
¢ The SUS or SIUS receives a stimulus and responds with the result to....
Eu.ModSt.7935 | Info A possible application of the schema is shown below using the example of the subsystem LS:
Information:
This state machine diagram describes the requirements for the following functionalities:
¢ receives the observed Signal Aspect and reports this to the Subsystem - Electronic Interlocking
¢ receives the observed intentionally dark state and reports this to the Subsystem - Electronic Interlocking
¢ receives the observed Luminosity and reports this to the Subsystem - Electronic Interlocking
Eu.ModSt.7936 | Info The description is to be transferred to "Requirements Part 2" of the specification document generated in the requirements management tool.
Eu.ModSt.7832 | Info Diagram heading:
stm/State Machine]<><FE_TFE block signature><>[Functional Viewpoint<>-<>Subsystem Requirements or Interface Requirements<>-<>Functional Entity or Technical Functional Entity<>STD<DiaNo>]
Eu.ModSt.1128 | Info <DiaNo> := Natural number starting with 1
Eu.ModSt.7569 | Info
Figure 7569 Example of a state machine diagram
stmfState Machine)F_ Obsenve Lumnosiy-Bahaou[Funchonl Viewpont - SubsystemRequierants- FunctionaEntty ST 4)
o——={NO_OPERATING_VOLTAGE
Initiald) \
wihan d5%in_EST_EfeS_St#ae = =BO0OTING")
whenld:'ﬂln_ES"l'_EfeS_S-lal! = - om whan{ d81in_EST_EfeS _Sisis = “HE_OSFERATIHG _VoLTAGE® r
@51n_EST_EeS_Stats = I
y L]
i OBSERVING LUMNOSITY N
.
Imiteal 1
whan{ DSin_Sensed_Lumingsty = “Day=)/ k% whani D9n_Sensed_Luminosity = »}
i -\I r '.;I'
r m‘f | whan{ DBin_Sensed Luming sity = #ighe?® o/ ! “IGHT_ I
Gmydﬂlnu_ﬂhsmcd_Lummlﬂy s "D.-_n";_)l-l': P A L_E.IﬁﬂdzTnLt_ﬂb!Emd_LLlﬂnmy cm "t;;.ay-_-;",-i
LN
Eu.ModSt.7570 | Head | 8.6.6.1 Region
Eu.ModSt.7571 | Info Each state machine contains at least one region, which itself can contain a number of states and pseudostates, as well as the transitions between them. During execution of a state machine, each of its regions has a single
active state that determines the transitions that are currently viable in that region. A region must have an initial pseudostate and can have a final state that correspond to its beginning and completion, respectively.
Eu.ModSt.7572 | Info If a state machine contains a single region, it is represented by the area inside the frame of the state machine diagram and it is not to be named. Multiple regions are named and shown separated by dashed lines. A state
machine with multiple regions may describe some concurrent behaviour happening within the state machine's owning block.
Eu.ModSt.7573 | Head | 8.6.6.2 State
Eu.ModSt.7574 | Info The UML specification defines a state as ,,a situation during which some (usually implicit) invariant condition holds. The invariant may represent a static situation such as an object waiting for some external or internal event
to occur®. The ,object", in the present case the FE, is waiting for a stimulus from its environment or for an internal stimulus such as a time event or a local trigger.
Eu.ModSt.7575 | Info Thus, a state represents a "between stimuli" condition of the external observable stimulus-response behaviour of a FE. In other words, it specifies the responses to incoming stimuli.

© EULYNX Partners

Page 99 of 120

Modelling Standard

ID Type

Requirements

Eu.ModSt.7576 | Info

It is helpful to use the analogy that a block, i.e. the FE, is controlled by a switch. Each state corresponds to a switch position. The state machine defines all valid switch positions (i.e. states) and transitions between switch
positions (i.e. state transitions). If there are multiple regions, each region is controlled by its own switch with its switch positions corresponding to its states. The switch positions can be specified by a form of truth table -
similar to how logic gates can be specified - in which the current states and transitions define the next state.

Eu.ModSt.7577 | Info

In the example depicted in Figure 427, the state ST2 represents a "between stimuli condition", i.e. it constitutes the precondition for triggering a response in the form of Effect_1. Following the analogy that the FE is
controlled by a switch, the switch would be positioned to ST2. When Event_3 occurs Effect_1 is executed while the FE changes to state ST3.

Eu.ModSt.7578 | Info

Figure 427 Example of a state specifying a response

stm Stimulus_Response_ Behaviour-Functional Viewpoint
[System Requirements - Functional Entity STD 1]

ST1

Event_1/ Event_2/

- ..

Event_3/Effect_1;

Eu.ModSt.7579 | Info

In the EULYNX requirements specification documents there are below the depicted state machine diagrams (as for example depicted in figure 33) the corresponding state transitions listed as atomic mandatory functional
requirements:

Info | Initial

Req | {Initial - ST1}

Info | ST1

Req | Event_1/{ST1 -ST2}
Info | ST2

Req | Event_2/{ST2 -ST1}
Req | Event_3/Effect_1; {ST2 - ST3}
Info | ST3

Eu.ModSt.7580 | Info

A state is represented on the state machine diagram by a round-cornered box containing its name.

Eu.ModSt.7581 | Info

Kinds of states:

The following three kinds of states are distinguished:
* simple state (state with no regions and therefore without nested states),
¢ sequential state (state with exactly one region) and
¢ concurrent state (state with at least two regions)

© EULYNX Partners

Page 100 of 120

Modelling Standard

ID Type Requirements

Eu.ModSt.7582 | Info Each state may contain entry and exit behaviour that are performed whenever the state is entered or exited respectively. Entry and exit behaviour are described as text expressions using the chosen action language
preceded by the keywords entry or exit and a forward slash.

Eu.ModSt.7583 | Info A state machine can contain transitions, called internal transitions, which do not effect a change in state. An internal transition has the same source and destination and, if triggered, simply executes the transition effect.

Eu.ModSt.7584 | Info By contrast, an external transition with the same source and destination state - sometimes called a transition-to-self - triggers the execution of that state's exit and entry behaviour as well as the transition effect.

Eu.ModSt.7585 | Info Additional to the states, SysML includes a number of pseudostates to provide additional semantics. The difference between a state and a pseudostate is that a region can never stay in a pseudostate, which merely exists to
help determine the next active state.

Eu.ModSt.7586 | Info The EULYNX methodology adopts the following SysML pseudostates:
¢ initial pseudostate,

¢ final state,

¢ choice pseudostate,

« fork pseudostate and

¢ join pseudostate.

Eu.ModSt.7587 | Info Pseudostates have a defined name, that may be visible on the diagrams.

Eu.ModSt.7588 | Head | 8.6.6.3 Initial pseudostate and final state

Eu.ModSt.7589 | Info An initial pseudostate is shown as a filled circle. It is used to determine the initial state of a region (see Figure 7609). The outgoing transition from an initial pseudostate may include an effect. Such effects are often used to
set the initial values of properties used by the state machine (e.g. call operation cOp1_init() shown in Figure 7609).

Eu.ModSt.7590 | Info A final state is shown as a bulls-eye (i.e. a filled circle surrounded by a larger hollow circle). It indicates that a region has completed execution. When the active state of a region is the final state, the region has completed,
and no more transitions take place within it. Hence, a final state can have no outgoing transitions.

Eu.ModSt.7591 | Head | 8.6.6.4 Choice pseudostate

Eu.ModSt.7592 | Info A choice pseudostate is shown as a white diamond with one transition arriving and two or more transitions leaving. It is used to construct a compound transition path between states. The compound transition allows more
than one alternative path between states to be specified, although only one path can be taken in response to any single event.

Eu.ModSt.7593 | Info Multiple transitions may either converge on or diverge from the choice pseudostate. When there are multiple outgoing transitions from a choice pseudostate, the selected transition will be one of those whose guard
evaluates to true at the time after the choice pseudostate has been reached. This allows effects executed on the prior transition to affect the outcome of the choice.

Eu.ModSt.7594 | Info When a choice pseudostate is reached in the execution of a state machine, there must always be at least one valid outgoing transition. If not, the state machine is invalid.

Eu.ModSt.7595 | Info If a compound transition contains choice pseudostates, any possible compound transition must contain only one trigger, normally on the first transition in the path.

Eu.ModSt.7596 | Head | 8.6.6.5 Fork pseudostate

Eu.ModSt.7597 | Info A fork pseudostate is shown as a vertical or horizontal bar with transition edges either starting or ending on the bar.

Eu.ModSt.7598 | Info It has a single incoming transition and as many outgoing transitions as there are orthogonal regions in the target state. Unlike choice pseudostates, all outgoing transitions of a fork are part of the compound transition.
When an incoming transition is taken to the fork pseudostate, all the outgoing transitions are taken.

Eu.ModSt.7599 | Info Because all outgoing transitions of the fork pseudostate have to be taken, they may not have triggers or guards but may have effects.

Eu.ModSt.7600 | Head | 8.6.6.6 Join pseudostate

Eu.ModSt. 7601 | Info A join pseudostate is shown as a vertical or horizontal bar with transition edges either starting or ending on the bar.

Eu.ModSt.7602 | Info The coordination of outgoing transitions from a concurrent state is performed using a join pseudostate that has multiple incoming transitions and one outgoing transition. The rules on triggers and guards for join
pseudostates are the opposite of those for fork pseudostates.

Eu.ModSt.7603 | Info Incoming transitions of the join pseudostate may not have triggers or a guard but may have an effect. The outgoing transition may have triggers, a guard and an effect.

Eu.ModSt.7604 | Info When all the incoming transitions can be taken and the join's outgoing transition is valid, the compound transition can occur. Incoming transitions occur first followed by the outgoing transition.

Eu.ModSt.7605 | Head | 8.6.6.7 Simple state

Eu.ModSt.7606 | Info As shown in the examples depicted in Figure 427 (states ST1, ST2, ST3) and Figure 7609 (state "OPERATIONAL"), a simple state has no regions and therefore no nested states.

© EULYNX Partners Page 101 of 120

Modelling Standard

ID Type Requirements

Eu.ModSt. 7607 | Info A simple state may, like any kind of state, contain entry behaviour, that is executed immediately upon entering the state, exit behaviour, that is executed immediately before exiting the state, and behaviour executed during
internal transitions. (see Figure 7609). All three kinds of behaviour are not interruptible.

Eu.ModSt.7608 | Info Figure 34 shows a simple example of a FE defining the functionality "Indicate signal aspect” of a light signal (LS) with a single OPERATIONAL state in its single region. A transition from the region's initial pseudostate goes
to the OPERATIONAL state. On entry, the light signal indicates that it is operational, setting the value of the out port "D3_Operational" to true, and on exit it indicates a non operational status, setting the value of "D3
_Operational" to false. While the light signal is in the state OPERATIONAL, it may receive commands to indicate a transmitted signal aspect (T1_Cd_Indicate_signal_aspect) and indicate it (D2_Signal_aspect). When in the
OPERATIONAL state, the intrasystem event "T4_SIL_not_fulfiled" triggers a transition to the final state, and because there is only one single region, the state machine terminates.

Eu.ModSt.7609 | Info
Figure 7609 Example of a simple state

'y]]] ™
stm F_Indicate_signal_aspect LS_SR - Behaviour [LS STD 3]|
Initial pseudostate —»
. - /cOp1_init Internal transition
Entry behaviour p_init(
: ..--"'"f
(4 OPERATIONAL - A
Entry/D3_Operational ;= true;
when(T1_Cd _Indicate_signal _aspect)/D2_Signal_aspect .= D1 _Signal_aspect;
Exit/D3_Operational = false;
T when(T4_SIL_ not_fulfilled ¥ T
, Simple state
Exit behaviour «—— Final state
kS A

Eu.ModSt.7610 | Head | 8.6.6.8 Transition

Eu.ModSt.7611 | Info A transition specifies a change of state within a state machine. It is a directed relationship between a source and a destination state, and defines an event (trigger) and a guard (condition) that both lead to the state
transition, as well as an effect (behaviour) that is executed during the transition. Source and destination can be the same state (see T2 in Figure 7626).

Eu.ModSt.7612 | Info Run to completion:

State machines always run to completion, which means that they are not able to consume another event until the state machine has completed the processing of the current event. Thus, the next event will be consumed
only if all effects (behaviour) of the previous event have been completed.

Eu.ModSt.7613 | Info Run to completion does not mean that a state machine owned by a FE interconnected with neighbouring FE monopolises all FEs in this network until the run to completion step is complete.

The preemption restriction only applies to the context of the corresponding FE.
Eu.ModSt. 7614 | Info An event that cannot be consumed, for example because there is no matching transition, is discarded.
Eu.ModSt.7615 | Info Transition notation:

A transition is shown as an arrow between two states, with the head pointing to the target state.

Eu.ModSt. 7616 | Info Transitions-to-self are shown with both ends of the arrow attached to the same state (see T2 in Figure 7626).

Eu.ModSt. 7617 | Info Internal transitions are not shown as graphical paths but are listed on separate lines within the state symbol (see T7 in Figure 7626).

Eu.ModSt.7618 | Info The definition of the transition's behaviour is shown in a formatted string on the transition with the event first, followed by a guard in square brackets, and finally the transition effect preceded by a forward slash (event-
effect block or even-action block). As shown in Figure 7626, any or all of the behavioural elements as event, guard and effect may be omitted. In T5 for example, all the behavioural elements are omitted. Transition T3, to
give another example, is only triggered by an event without guard and effect.

Eu.ModSt.7619 | Info Event:

An event specifies some occurrence that can be measured with regard to location and time and causes a transition to occur. Descriptions of the triggering events are provided in chapter 8.6.6.9 Event.

© EULYNX Partners

Page 102 of 120

Modelling Standard

ID Type Requirements

Eu.ModSt.7620 | Info Guard:

The transition guard contains an expression that must evaluate true in the moment of the triggering event so that the transition is performed (see T1, T4 and T7 in figure 35). The guard is specified using a constraint which

includes an expression formulated in the applied action language to represent the guard condition. If preceded by an event (see T1 and T7 in Figure 7626) and if the event satisfies a trigger, the guard on the transition is

evaluated. If the guard evaluates to true, the transition is triggered; if the guard evaluates to false, then the event is consumed with no effect.
Eu.ModSt.7621 | Info Transitions can also be triggered by internally generated completion events. For a simple state a completion event is generated when the entry behaviour (for example Entry/effect3 in Figure 7626) has completed.
Eu.ModSt.7622 | Info Thus, where a guard is shown without a preceding event (see T4 in Figure 7626), the guard condition is evaluated immediately after entering the source state, i.e. after its entry behaviour has completed, and a transition

takes place if true, triggered by the generated completion event of the source state.
Eu.ModSt.7623 | Info Please note: if the guard condition of a transition without trigger changes to true while the state machine is already in the source state (for example in state ST2), the guard condition won't be evaluated and no transition

will take place.
Eu.ModSt.7624 | Info Effect:

The effect is a behaviour executed when entering or exiting a state (entry and exit behaviour, respectively), during an internal transition (see T7 in Figure 7626) and during the external transition from one state to another

(see T1 in Figure 7626). If an external transition is triggered, first the exit behaviour of the current (source) state, then the transition effect and finally the entry behaviour of the target state are executed.

Descriptions of the effects used in the methodology underlying this Modelling standard are provided in chapter &.6.6.10 Effect.
Eu.ModSt.7625 | Info A transition may also be formulated textually as atomic functional requirement:

Event [Guard]/Effect {Source state - Target state}.
Eu.ModSt.7626 | Info

Figure 7626 Transition notation

. N . . ™
stm Transition_notation - Behaviour [STD 4] ‘
15 % event?/effect?
. T2 'j
|
ol = sm
/
T1 _———
event1[guard1]/effect1
[quard3]/ (ST3
(ST2 —={_ sm]
Entry/effect3 T4Ij
17
|-- event3[guard2]/effectd ETE
Exit/effectd
A
N eventd/ eventd/
@
M A

Eu.ModSt.7627 | Head | 8.6.6.9 Event
Eu.ModSt.7628 | Info An event specifies some occurrence that can be measured with regard to location and time and causes a transition to occur.

© EULYNX Partners

Page 103 of 120

Modelling Standard

ID Type Requirements
Eu.ModSt.7629 | Info In the EULYNX methodology, the following types of events are used:
¢ Change event,
e Time event
¢ Internal broadcast event
* Signal event.
Eu.ModSt.7630 | Head | 8.6.6.9.1 Change event
Eu.ModSt.7631 | Info A change event indicates that some condition has been satisfied, that is, the value of a specified Boolean expression holds. A defined change event occurs during system operation each time the specified Boolean
expression toggles from false to true. Change events are continuously evaluated.
Eu.ModSt.7632 | Info According to the EULYNX methodology, the Boolean expression of a change event may contain the following arguments:
e Data In Port,
 block property
¢ block operation.
Eu.ModSt.7633 | Info Notation of change events:
Change events use the term ,when" followed by the Boolean expression that has to be met in parenthesis. Like other constraint expressions, the Boolean expression is to be expressed in text using the applied action
language:
when(boolean expression)[guard]/effect;
Eu.ModSt.7634 | Head | 8.6.6.9.2 Time event
Eu.ModSt.7635 | Info A time event indicates that a given time interval has passed since the current state was entered.
Eu.ModSt.7636 | Info Notation of time events:
Time events use the term "after" followed by the time period (in milliseconds by default) in parenthesis, e.g. after(D1_Con_t1) as depicted in Figure 7638.
Eu.ModSt. 7637 | Info "after" indicates that the time is relative to the moment the state is entered. The transition T1 shown in Figure 7638 is, for example, triggered after the time D1_Con_tl has expired. The time starts on entering the state

ST1.

© EULYNX Partners

Page 104 of 120

Modelling Standard

ID

Type

Requirements

Eu.ModSt.7638

Info

Figure 7638 Example of the usage of time events

ibd Usage_of time_events - Events [IBD 12]|

«block»
Usage_of_time_events

values
«BlockProperty» Con_t2 : Integer = 1000

—| D1_Con_t1: Integer

-
stm Usage_of_time_events - Behaviour [STD 12] ‘

after{ 500)/

w
—
—
M

T .

after(D1_Con_t1 ¥

ST2

after(Con_t2)/

| - ST3
2

Eu.ModSt.7639

Head

8.6.6.9.3 Internal broadcast event

Eu.ModSt.7640

Info

Internal broadcast events occur when corresponding SysML block operations are invoked. They are supposed to submit broadcasts within the state machine of a FE.

Eu.ModSt.7641

Info

In Figure 7642 for example, the SysML block operations bcl_Bc_info() and bc2_Bc_info() represent internal broadcast events. During transition T1, the internal broadcast event bcl_Bc_info() is invoked in order to trigger

transition T3. Furthermore, during transition T4, the internal broadcast event bc2_Bc_info() is invoked to trigger transition T2.

© EULYNX Partners

Page 105 of 120

Modelling Standard
ID Type Requirements
Eu.ModSt.7642 | Info
Figure 7642 Example of the usage of internal broadcast events
ibd Usage of internal_broadcast_events - Events [IBD 13]|
«block»
Usage_of_internal_broadcast_events
Operation
«Dperation» bc1_Bc info ()
«Operation» bc2_Bc_info ()
—| T1_Stimuli_1 : Pulsedin
|
5| T2 Stimuli_2 - Pulsedin
. . . S
stm Usage of internal_broadcast_events - Behaviour [STD ’13]|
&
f
“” ST1 h
ST1_1 bc2_Bc_infof pm e -|T2 [\‘\1
. —
J, ST T hen(T1 _stimui_ 1y &\ >H1-12
bc1 Bc_info; T ﬁ
STt 2 T3
bc1 _Bc_info/
ST1 2 1 ' ST1 2 2
T4 i _____ when{ T2_Stimuli_2 ¥bc2 Bc _info;
e oy
b
Eu.ModSt.7643 | Head | 8.6.6.9.4 Signal event
Eu.ModSt. 7644 | Info A signal event is generated when a reception of an interface block receives a signal. This is then used in the state model to trigger a state transition (1).

© EULYNX Partners Page 106 of 120

Modelling Standard

ID Type Requirements
Eu.ModSt.7645 | Info Figure 7645 Example of a signal event
| |
(RECEIVING_LIGHT SIGNAL COMMANDS

RECEIVING SIGMAL ASPECT

L]
- rnit\LgH
(p 1] RECEIVING_SIGNAL_ASPECTS
Cd_Indicate_Signal_Aspect{CommandedSignaldspectState = Signal_A spect_1 1/d2out_Required_Signal_Aspact := "Signal Aspect 1":
Cd_Indicate_Signal_Aspect{CommandedSignaldspectState = Signal_A spect_27/d2out_Required_Signal_Aspect := "Signal Aspect 2"
Cd_Indicate_Signal_Aspect{CommandedSignaldspectState = Most_Restrici_Aspectj/d2out_Required Signal_Aspect := "Most Restrict Rspect”:
Entry/d2out_ Required_Signal_Aspect := "Unknown™:

Eu.ModSt.7646 | Head | 8.6.6.10 Effect

Eu.ModSt.7647 | Info An effect is a behaviour executed when entering or exiting a state (entry and exit behaviour, respectively), during an internal transition or during an external transition from one state to another.

Eu.ModSt.7648 | Info The sequence of effect execution is demonstrated in figure 7649. Transition T1 is taken immediately on completion of effectl. The sequence of effect execution when event2 occurs (T3) is: effect4, then effect5, then
effect2. Eventl generates only one effect (T2): effect3.

Eu.ModSt.7649 | Info
Figure 7649 Sequence of effect execution

P
stm Effect_execution - Behaviour [STD 14] |

event? /feffectt

TS

ST T2
I\M H Entry/effect2
: eventt/effect3 f------ To &
T E:-:itfeffecM

Eu.ModSt.7650 | Info The following elements of behaviour may be represented as effect:
¢ Event-driven responses using signals,

* Responses in form of continuous flows,

 Call behaviour.

Eu.ModSt.7651 | Head | 8.6.6.10.1 Event-driven responses using signals

Eu.ModSt.7652 | Info As shown in Figure 7652, signals (1) are sent as an effect of a state transition or triggered in a block operation via the corresponding port (2) of the respective FE.

© EULYNX Partners Page 107 of 120

Modelling Standard

ID Type Requirements
Eu.ModSt.7653 | Info
Figure 7653 Sending a signal
Stan_Slatus_Repurt[d@_ﬁb&ewed_Lumimsity =
"Night"]/send Msg_Set_Luminosity (Night) to P2out:
send Status_Report_LLompleted to p29inout;
Set_Luminosity { Night) o P2out; NIGHT
t_ Luminosity (Day) cef P2out;
Luminosity { Night) -:! P2out; !
Luminosity (Day) u:/ P2out; [
|
ibd [Bincth_SCI_LS_Hepnrt [Functional Viewpoint - Inteface Requirements - Functional Entity]
P2out : SCI_LS 1
A
P2t FI{SCI_S-pecr'ﬁc
dgin_PDI_Cdhnection_State : String
d19|n_0bsé:=-ed_ﬂlgnal_Aspeti Sting
d20in_Observed_Intentionally_Dark : Boolean
d21in_Observed_Lumingsity - Stnng
Eu.ModSt.7654 | Head | 8.6.6.10.2 Responses in form of continuous flows
Eu.ModSt.7655 | Info A response is sent in form of a continuous flow by assigning the desired value to a data out port, e.g. Dlout_Temperature := 40.
Eu.ModSt.7656 | Info All out ports are initialised. The initialisation can be carried out in the body of the init-block operation systematically named cOp1_init(). Alternatively it can be carried out directly in the transition effect of the transition
outgoing from initial state of the state machine.
Eu.ModSt. 7657 | Info Furthermore, the sender of a response must always configure the current value of the Data Out Port.
Eu.ModSt.7658 | Head | 8.6.6.10.3 Call behaviour
Eu.ModSt.1013 | Info Call behaviour is invoked on demand, executed and terminated after execution. It is supposed to define event-driven data transformations. The algorithm of the data transformations is to be described in the body of the
corresponding block operation using ASAL (see chapter 8.6.8).
Eu.ModSt.551 | Info Naming of Call behaviour
cOp<Id>_<behaviour name>,
Example: cOp2_establish_safe_state
Eu.ModSt.1016 | Info Id: Natural number starting with 1
Eu.ModSt.552 | Info The call behaviour to initialise the block properties and out ports of a FE is to be named cOp1_init() systematically.
Eu.ModSt.7660 | Head | 8.6.6.11 Composite state

© EULYNX Partners

Page 108 of 120

Modelling Standard

ID Type Requirements
Eu.ModSt. 7661 | Info States can have regions. Such states are called composite states or hierarchical states. They allow state machines to scale to represent state-based behaviour of any complexity. A composite state may have one single
region (sequential state) but also multiple orthogonal regions (concurrent state or orthogonal composite state).
Eu.ModSt. 7662 | Info Instead of using a region to decompose the behaviour of a state, a state machine diagram may be assigned to the corresponding state alternatively, defining its behaviour.
Eu.ModSt.7663 | Info Each region or state machine diagram assigned to a state has a set of mutually exclusive disjoint subvertices and a set of transitions. In other words, it typically will contain an initial pseudostate and a final state, a set of
pseudostates, and a set of substates, which may themselves be composite states.
Eu.ModSt.7664 | Info Any state enclosed within a region of a composite state is called a substate of that composite state.
Eu.ModSt.7665 | Head | 8.6.6.12 Sequential state
Eu.ModSt. 7666 | Info A sequential state, such as ST2 shown in the example depicted in Figure 7674, is a composite state that has one region.
Eu.ModSt.7667 | Info Figure 7674 shows the decomposition of the state ST2 into the substates ST2_1 and ST2_2. On entry to the state ST2, two entry behaviours are executed: the entry behaviour of ST2, T9_Response_1 := true and then the
entry behaviour of ST2_1, T15_Response_7 := true. This is because on entry, as indicated by the initial pseudostate, the initial substate of ST2 is ST2_1.
Eu.ModSt.7668 | Info When in state ST2_1, T2_Stimulus_2 will cause the transition T2 to the state ST2_2 and will successively process T16_Response_8 := true, T12_Response_4 := true and T13_Response_5 := true. If T5_Stimulus_5 is
received while in state ST2_2, the change event will trigger the transition T4 to the final state. A completion event is generated when the final state is reached, triggering the transition T5 to state ST1. When leaving ST2,
T11_Response_3 := true is executed.
Eu.ModSt. 7669 | Info A composite state (sequential state or concurrent state) may be porous, which means transitions such as transition T3 and T6 shown in Figure 7674 may cross the state boundary, starting or ending on states within its
regions.
Eu.ModSt.7670 | Info In the case of a transition ending on a nested state, such as transition T6 shown in Figure 7674, the behaviours are executed in this order:
1. the effect T14_Response_6 := true of the transition T6,
2. the entry behaviour T9_Response_1 := true of the composite state,
3. the entry behaviour T13_Response_5 := true of the transition's target nested state.
Eu.ModSt. 7671 | Info In the opposite case, such as transition T3 shown in Figure 7674, the behaviours are exited in this order:
1. the exit behaviour T16_Response_8 := true of the source nested state,
2. the exit behaviour of the composite state T11_Response_3 := true is executed,
3. the transition effect T17_Response_9 := true.
Eu.ModSt.7672 | Info In the case of more deeply nested state hierarchies, the same rule can be applied recursively to all the composite states whose boundaries have been crossed.
Eu.ModSt.7673 | Info If T1_Stimulus_1 is received while in state ST2, the change event will trigger the internal transition T7 and the effect T10_Response_2 := true will be executed without a change of state.

© EULYNX Partners

Page 109 of 120

Modelling Standard

ID Type

Requirements

Eu.ModSt.7674 | Info

Figure 7674 Example of a sequential state

rE:tm Sequential_state - Behaviour [STD 19] |

o ™y

Sequential state - sT2

Entry/T9_Response_1 = true;

when(T3 Stimulus 3 \ypen(T1_Stimulus_1 }/T10_Response_2 := true] T7 ﬁ

ST , _
J' i Exit/T11_Response_3 = true;
[~
T Region ofthe
I, sequential state
when(T4 _Stimulus_4 . W
T17_Response_ 9 = trug; ST2_1

. Entry/T15_Response_7 = true;
|
! \Exitfﬁ 6f_Response 8 = true

i
T 5 when({ T2 _Stimulus_2)
771 T12_Response_4 = true;
when(T6_Stimulus_6&)/ s

T14_Response 6 := true: ST2_2 |
- [Entry/T13_Response_5 := true; |

TG when{ Th_Stimulus_5)/
T4 B‘[---

.. -

Eu.ModSt.7675 | Head

8.6.6.13 Concurrent state

Eu.ModSt.7676 | Info

A concurrent state as shown in Figure 7683, sometimes also called an orthogonal composite state, contains at least two regions.

Eu.ModSt.7677 | Info

When a concurrent state is active, each region has its own active state that is independent of the others, and any incoming event is independently analysed within each region.

Eu.ModSt.7678 | Info

A transition that ends on the concurrent state, such as transition T1 in Figure 7683, will trigger transitions from the initial pseudostate of each region, so there must be an initial pseudostate in each region for such a
transition to be valid.

Eu.ModSt.7679 | Info

Similarly, a completion event for the concurrent state will occur when all the regions are in their final state.

Eu.ModSt.7680 | Info

When an event, as for example the internal broadcast event bc1l_Bc_info shown in Figure 7683, is associated with triggers in multiple orthogonal regions, the event may trigger a transition in each region (e.g. transitions T3
and T5), assuming the transition is valid based on the other usual criteria.

Eu.ModSt.7681 | Info

Please note: a transition can never cross the boundary between two regions of the same concurrent state.

Eu.ModSt.7682 | Info

In addition to transitions that start or end on the concurrent state, such as transition T1 in Figure 7683, transitions from outside the concurrent state may start or end on the nested states of its regions. In this case, one
state in each region must be the start or end of one of a coordinated set of transitions. This coordination is performed by a fork pseudostate in the case of incoming transitions, such as T8.1, T8.2 and T8.3 in Figure 7683,
and a join pseudostate for outgoing transitions, such as T6.1, T6.2 and T6.3 in Figure 7683.

© EULYNX Partners

Page 110 of 120

Modelling Standard

ID Type Requirements

Eu.ModSt.7683 | Info
Figure 7683 Example of a concurrent state

rE:tm Concurrent_state - Behaviour [STD 20] |

"NhEl'Il: T5 Stimulus 5]!.' "NhErl[TE_StIm L||L|S_Ei]_l'.
— - = STH
T .. when(T3_Stimulus_3)
i ST2

Entry/T9_Response 1 = true;

[
when(T1_Stimulus_1 ¥bc1_Bc_info;

_____ T6. 1 ﬁ Exit/T11_Response_3 = true;
ST2_1 T8 “F-{
when{ T2_Stimulus_2 ¥
TE.2 x T12_Response_4 = trug; N
' . 8.2
| 1
|
v f [1
v T2 !
jTS 5T2_ 1. 2 ;
. :
i bel_Be_infol -
' :
Join pseudostate Region 1 of the concument state !

——— Fork pseudostate

when({ T4_Stimulus_4

T12_Response_4 = true; N
[,
STE_E_‘ID ﬁﬁ GTE_E_E —

bc1 _Bcec _info/

Concurrent state or othogonal composite state
. A

Eu.ModSt.7684 | Head | 8.6.6.14 Decomposition of states using state machine diagrams

Eu.ModSt.7685 | Info Instead of decomposing the behaviour of a state within a region of a sequential state or multiple regions of a concurrent state, the behaviour may alternatively be specified by a state machine diagram assigned to the
corresponding state (see Figure 7689).

Eu.ModSt.7686 | Info The region of the corresponding state machine diagram typically will contain an initial pseudostate and a final state, a set of pseudostates, and a set of substates, which themselves may be decomposed by state machine
diagrams.

Eu.ModSt.7687 | Info As illustrated in Figure 7689, a transition (e.g. transition T1) ending on a state (e.g. state ST2) that is refined by a state machine diagram will trigger the transition from the initial pseudostate of the diagram to its initialising
state (e.g. state ST2_1).

© EULYNX Partners Page 111 of 120

Modelling Standard

ID Type Requirements
Eu.ModSt.7688 | Info Similarly, when the behaviour specified on the state machine diagram completes (e.g. the final state is entered after triggering the transition T2), it will generate a completion event that can trigger transitions (e.g.
transition T3) whose source is the state (e.g. state ST2) the state machine diagram is assigned to.
Eu.ModSt.7689 | Info
Figure 7689 Principle of decomposing states by means of state machine diagrams
i
stm Decomposition_of states _using_state_machine_diagrams - Behaviour [STD 21]
when{ T1_Stimulus_1 ¥ (ST?2
>) j e
T1
:
T3 refines
M /
stm ST2 [STD 21 .1]‘
/
ST2 1
when(T2 Stimulus_2)/
Eu.ModSt.7690 | Head | 8.6.6.15 Transition firing order in nested state hierarchies
Eu.ModSt. 7691 | Info The same event may trigger transitions at several levels in a state hierarchy, and with the exception of concurrent regions, only one of the transitions can be taken at a time. Priority is given to the transition whose source
state is innermost in the state hierarchy.
Eu.ModSt.7692 | Info Suppose the state machine depicted in Figure 7695 'is in its initial state (i.e. in state ST1_1_1 and ST1_2_1). The stimulus T1_Stimulus_1 is associated with the triggers of the transitions T1, T2 and T3, each with guards
based on the value of D2_No.
Eu.ModSt.7693 | Info The following list shows the transitions that will fire upon receipt of T1_Stimulus_1 based on values of D18_No from -1 to 1 if the system is in the states ST1_1_1 and ST1_2_1:
¢ D2_No equals -1: transition T3 will be triggered because it is the only transition with a valid guard;
¢ D2_No equals 0: transition T1 will be triggered because, although transition T3 also has a valid guard, state ST1_1_1 is the innermost of the two source states; or
¢ D2_No equals 1: both transitions T1 and T2 will be triggered because both their guards are valid.
Eu.ModSt.7694 | Info The normal rules for execution of exit behaviour apply, so, before the transition from state ST1 to state ST2 can be taken, any exit behaviour of the active nested states of state ST1, as well as the exit behaviour of state

ST1, must be executed.

© EULYNX Partners

Page 112 of 120

Modelling Standard

ID Type Requirements
Eu.ModSt.7695 | Info
Figure 7695 Illustration of transition firing order
4 . .] et
stm Transition_firing_order - Behaviour [STD 22] |
J i
ST1
S5T1.1
when({ T1_Stimulus_1)[D2 _MNao == 0]/
ST1 1 1 : 57111 2
T
sT12
when{ T1 Stimulus 1)02 MNo == 1)/
ST1_2_1 : ST1_2_2
i
~
T 71--| when(T1_Stimulus_1)[D2_No <= 0]/
——
[sT2]
S -
Eu.ModSt.1078 | Head | 8.6.6.16 Interaction between state machines
Eu.ModSt. 1082 | Info State machines in different blocks, may interact with one another by sending stimuli and returning responses. For example, the state machine of one block can send a stimulus to another block as part of a transition effect
or state behaviour. The event corresponding to the receipt of this stimulus by the receiving block can trigger a state transition in its state machine.
Eu.ModSt.1083 | Info Thus, different behaviour, each specifying a certain functionality of the system, may be encapsulated in blocks and interconnected with each other in a network of FEs or TFEs, i.e. in a Functional or Technical Functional
Architecture.
Eu.ModSt.7831 | Head | 8.6.7 Bindings (see chapter 8.2.1)
Eu.ModSt.7833 | Info Diagram of model view "Functional Entity" (ibd and stm) has a "Req" binding.
Eu.ModSt.7834 | Info Diagram of model view "Technical Functional Entity" (ibd and stm) has a "Req" binding.
Eu.ModSt.7837 | Info The algorithm defined in a time advanced operations has a "Req" binding.
The algorithm defined in a time advanced operation represents the mandatory externally visible behaviour of a FE or TFE in place of or in cooperation with a state machine.
Eu.ModSt.7839 | Info Transitions, states, ports, block operations and block properties have "Def" bindings.
Eu.ModSt.7537 | Head | 8.6.8 Action language
Eu.ModSt.7538 | Info The EULYNX methodology follows the objective of creating executable specification models. In order to specify the necessary executable behaviours in a target language independent way, the Atego Structured Action
Language (ASAL) is used.
Eu.ModSt.7539 | Info ASAL is used to specify block operations or Event Action Blocks that define the transition effects on state machine diagrams.
Eu.ModSt. 1940 | Info A description of data types, logical operators and basic statements of the Atego Structured Action Language (ASAL) is provided below.
Eu.ModSt.7541 | Head | 8.6.8.1 Logical operators

© EULYNX Partners

Page 113 of 120

Modelling Standard

ID Type Requirements
Eu.ModSt.7542 | Info ¢ Greater than: >
e Less than: <
¢ Greater than or equal: >=
e Less than or equal: <=
e Equal: =
¢ Not equal: <>
¢ Conjunction: AND
¢ Disjunction: OR
¢ Negation: NOT
¢ Exclusive disjunction: XOR
Eu.ModSt.7840 | Info The logical operators "AND", "OR", "NOT" and "XOR" are to be written in capital letters.
Eu.ModSt.7543 | Head | 8.6.8.2 Data types
Eu.ModSt.7544 | Info As the EULYNX specification approach follows the objective of creating executable specification models, the range of data types is limited to data types the simulation tool SySim supports (SySim value types).
Eu.ModSt.294 | Info Only the SySim value types, including the redefined data types "PulsedIn" and "PulsedOut" may be used for the specification of systems requirements :
¢ Boolean
¢ DateTime
e Single
e String
¢ Decimal
¢ Double
e Long
e Integer
¢ Timespan
¢ PulsedIn
¢ PulsedOut
Eu.ModSt.7546 | Info The data types “PulsedIn” and “PulsedOut” represent redefinitions of the data type Boolean and are exclusively reserved to be assigned to Trigger Ports (T-Ports). That is, a Trigger In Port is typed with the data type
"PulsedIn" and a Trigger Out Port with the data type "PulsedOut".
Eu.ModSt.7547 | Info Outgoing data typed with “PulsedOut” (as default false) that are set to true (for example, Tlout_Cd_indicate_signal_aspect := true) automatically change back to false after a defined time. The defined time frame is
sufficient to trigger a transition in a receiving state machine.
Eu.ModSt.7548 | Info Incoming data at receiver side typed with “PulsedIn” apply the behaviour of the corresponding outgoing data at sender side typed with “PulsedOut”.
Eu.ModSt.7906 | Info For the typing of proxy ports, the specially adapted interface blocks are to be used:
¢ IBoolean
¢ IDateTime
¢ IDecimal
¢ IDouble
e IInteger
e Ilong
e ISingle
e IString
Eu.ModSt.7907 | Info The data types "PulsedIn” and "PulsedOut" can only be used with flow ports but not in connection with proxy ports.
Eu.ModSt.269 | Head | 8.6.8.3 Declaring variables
Eu.ModSt.270 | Info The Declare statement declares local variables.

The syntax is as follows:

declare <variable list> : <type> ;

Where:

* <variable list> - specifies a list of variables that are being declared. For each variable an optional initial value can be set through the ':=" assignment operator.
- <type> - specifies the type of the variables that are being declared.

© EULYNX Partners

Page 114 of 120

Modelling Standard

ID

Type

Requirements

Eu.ModSt.270

Example:

declare A : Boolean;

declare B := False : Boolean;
declare C, D := 0 : Integer;

Eu.ModSt.7549

Head

8.6.8.4 Reading the value of a port

Eu.ModSt.7550

Info

The value of a port may be read using the name of the port on its own:
The syntax is as follows:
<A> := <port>;
Where:
<port> specifies the port whose value is being read.
<A> specifies for example the value property the value of the port is to be assigned to.

Example:
Mem_D1_Signal_aspect := D1_Signal_aspect;

Eu.ModSt.7551

Head

8.6.8.5 Setting the value of a port

Eu.ModSt.7552

Info

The value of a port may be set using the name of the port:
The syntax is as follows:

<port> := <value>;

Where:

* <port> - specifies the port whose value is being set.

* <value> - specifies the value that is being set for the port.

Example:
T1_Cd_Indicate_signal_aspect := true;

Eu.ModSt.7553

Head

8.6.8.6 Calling an operation

Eu.ModSt.7554

Info

To call an Operation item in ASAL, reference the Operation with its default (the default is "This"). You must use parentheses for the operation, even if there are no parameters to pass.
The syntax is as follows:

<operation> ([<parameters>]);

Where:

- <operation> - specifies the operation that is being called.

By default, the Operation is called against 'This'.

* <parameters> - specifies any parameter values that are passed to the operation that is being called.

Examples:
MyOperation(True);
OperationWithNoParameters();

Eu.ModSt.7555

Head

8.6.8.7 Assigning values to variables

Eu.ModSt.7556

Info

Values can be assigned to variables.

The syntax is as follows:

<variable> := <expression> ;

Where:

* <variable> - specifies the variable that is being assigned.

- <expression> - specifies the value that is being assigned, which can be defined through an expression.

Example:
Mem_ped_wait := False;

Eu.ModSt.7557

Head

8.6.8.8 Conditional execution of code

© EULYNX Partners

Page 115 of 120

Modelling Standard

ID

Type

Requirements

Eu.ModSt.7558

Info

The if, then, else statements provide a mechanism for conditional execution of code.
The syntax is as follows:

if <condition> then

... //code to execute

elseif <condition> then

... //code to execute

else

... //code to execute

end if

Where:

* <condition> - specifies the condition that is being tested.

Example:

if A < 100 then
A=A+1;

elseif B < 100 then
B:=B+1;

else

NowStop := True;
end if

Eu.ModSt.7559

Head

8.6.8.9 While loops

Eu.ModSt.7560

Info

The while loop provides a mechanism for executing code while a condition is true.
The syntax is as follows:

while <condition>

... //code to execute

end while

Where:

* <condition> - specifies the condition that is being tested.

Example:
while A < 100
A=A+1;
end while

Eu.ModSt.7561

Head

8.6.8.10 Case selection

Eu.ModSt.7562

Info

The case selection provides a mechanism for executing code when a case is true.
The syntax is as follows (note that there can be many cases):

select case <condition>

case <condition>:

... //code to execute

case else:

... //code to execute

end select

Where:

* <condition> - specifies the condition that is being tested.

Example:

select case A + B
case 200:
ResultlIs200 := True;
case else:
ResultlIs200 := False;
end select

Eu.ModSt.7563

Head

8.6.8.11 Return statement

© EULYNX Partners

Page 116 of 120

Modelling Standard

ID Type Requirements

Eu.ModSt. 7564 | Info The Return statement can return the result of an expression.
The syntax is as follows:

return <expression> ;

Where:

* <expression> - specifies the expression that returns the result.

Example:
return A + B;

Eu.ModSt.287 | Head | 8.6.8.12 Comments

Eu.ModSt.288 | Info The Comment statement specifies text that is ignored by the target language.
The syntax is as follows for single line comments:

/] <text>

Where:

- <text> - specifies the text that is generated as a comment.

Eu.ModSt.289 | Info Example:
// return the sum of A + B

Eu.ModSt.290 | Head | 8.6.8.13 Example program written in ASAL

Eu.ModSt.291 | Info This is an example program that is written in ASAL.

declare A := 0, B: Integer; // Former declared variable initialized, latter is not. Both share the same type
declare GoOn := True : Boolean;

declare NowStop := False : Boolean;

B := 0; // Assignment

NowStop := not B = 0 AND (GoOn or NowStop); // Assignment (it's False) using a logical expression
while GoOn AND NOT NowsStop do // While loop

if A < 100 then // Condition ... if

A=A+1;
elseif B < 100 then // Condition, elseif
B:=B+1;

else // Condition, else

NowStop := True;

end if // end of condition.

end while

declare TestOk : Boolean;

select case A + B // Selection statement. It's similar to C/C++ switch (but no “break”, only one case is executed at most)
case 199 + (A + B) / (A + B): // Case expression, equates to 200
TestOk := True;

case else: // Default case

TestOk := False;

end select

return A + B; // Return statement

Eu.ModSt.825 | Head | 9 References

Eu.ModSt.826 | Info [1] OMG Systems Modeling Language (OMG SysML ™),https://sysml.org/.res/docs/specs/OMGSysML-v1.6-19-11-01.pdf

Eu.ModSt.827 | Info [2] OMG Unified Modeling Language TM (OMG UML), https://www.omg.org/spec/UML/2.5.1/PDF

Eu.ModSt.828 | Info [3] KnowGravity Inc., RIAL Risk Analysis 10, 30.11.2014

Eu.ModSt.829 | Info [4] M. Broy, K. Stglen, Specification and development of interactive systems, Focus on streams, interfaces, and refinement, Springer-Verlag New York, Inc, 2001

Eu.ModSt.830 Info [5] T. Weilkiens, Systems Engineering with SysML/UML, Modeling, Analysis, Design, dpunkt.verlag GmbH, Heidelberg, Germany, 2006

Eu.ModSt.831 Info [6] J.Braband, B-E. Brehmke, S. Griebel, H. Peters, K-H Suwe, The CENELEC-Standards regarding Functional Safety, Eurailpress, 2006

Eu.ModSt.832 Info [7] H. Kodnig, Protocol Engineering, B. G. Teubner Verlag, 2003

© EULYNX Partners Page 117 of 120

Modelling Standard

ID Type Requirements

Eu.ModSt.833 | Info [8] R.J. Wieringa, Design methods for reactive systems, Elsevier Sience (USA), 2003

Eu.ModSt.834 | Info [9] KnowGravity Inc., Modelling Interlocking Requirements using UML, A Guideline, UIC/Euro-Interlocking, 2002

Eu.ModSt.835 | Info [10] M. Debbabi, F. Hassaine, Y. Jarraya, A. Soeanu, L. Alawneh, Verification and Validation in Systems Engineering, Springer-Verlag Berlin Heidelberg, 2010

Eu.ModSt.836 | Info [11] T. Koch, Rechnergestiitzter Sicherheitsnachweis: Ein Verfahren zum Ausschluss gefahrlicher Systemzustande in rechnergesteuerten Eisenbahn- Sicherungsanlagen, Dresden: Technische Universitat, Fakultat
Verkehrswissenschaften ,Friedrich List", Diss. 1997

Eu.ModSt.837 | Info [12] M. Burkhard, M. Hoeft, Bericht Zielarchitektur ESTW, Deutsche Bahn AG Systemverbund Bahn VTZ 12, Stand 0.92, 18.01.2009

Eu.ModSt.838 | Info [13] Atego Modeler, Help

Eu.ModSt.839 | Info [14] http://de.ptc.com/application-lifecycle-management/integrity/modeler

Eu.ModSt.840 | Info [15] http://de.ptc.com/application-lifecycle-management/integrity/modeler/sysim

Eu.ModSt.841 | Info [16] http://de.ptc.com/application-lifecycle-management/integrity/modeler/reviewer

Eu.ModSt.842 | Info [17] CENELEC: EN 50126, Railway Applications - The Specification and Demonstration of Reliability, Availability, Maintainability and Safety (RAMS)

Eu.ModSt.843 | Info [18] J. Ernst, Das Sp Dr S60-Stellwerk, Eisenbahn-Fachverlag, Heidelberg/Mainz, 1978

Eu.ModSt.844 | Info [19] O. Lemke, A. Harhurin, K-D Sievers, Systems-Engineering-Prozess fiir LST-Anwendungen unter Beriicksichtigung aktueller Normen, DB Netz AG- I.NVT 31, 2011

Eu.ModSt.845 | Info [20] I. Jacobson, M. Griss and P. Jonsson, Software Reuse: Architecture Process and Organisation for Business Success, Addison-Wesley 1997

Eu.ModSt.846 | Info [21] Shane Sendall and Alfred Strohmeier, From use cases to system operation specifications, In Stuart Kent and Andy Evans, editors, UML 2000 - The Unified Modeling Language: Advancing the Standard, Third
International Conference, volume 1939 of LNCS. Springer, 2000

Eu.ModSt.847 | Info [22] Alistair Cockburn, Writing Effective Use Cases, Addison Wesley, 2001.

Eu.ModSt.848 | Info [23] Heldal Rogardt, Use Cases are more than System Operations, Chalmers University of Technology, Gothenburg, Schweden.

Eu.ModSt.889 | Info [24] Sanford Friedenthal, Alan Moore, Rick Steiner, A Practical Guide to SysML, Third Edition: The Systems Modeling Language, The MK/OMG Press, 2015.

Eu.ModSt.1495 | Info [25] Klaus Pohl, Harald Honninger, Reinhold Achatz, Manfred Broy, Model-Based Engineering of Embedded Systems, The SPES 2020 Methodology, Springer-Verlag Berlin Heidelberg 12.

Eu.ModSt.1469 | Info [26] Klaus Pohl, Manfred Broy, Heinrich Daembkes, Harald Honninger, Advanced Model-Based Engineering of Embedded Systems, Extensions of the SPES 2020 Methodology, Springer International Publishing AG 2016.

Eu.ModSt. 1477 | Info [27] Christer Lofving, Arne Boralv, Formal Methods Taxonomy and Survey, X2Rail-2 Deliverable D5.1, 16.05.2018

Eu.ModSt.1502 | Info [28] https://de.mathworks.com/products/simulink.html

Eu.ModSt.1517 | Info [29] The Institute of Electrical and Electronics Engineers, Inc.: IEEE Recommended Practice for Architectural Description of Software-Intensive Systems. IEEE Std. 1471-2000. New York, 2000

Eu.ModSt. 1568 | Info [30] Osamu Shigo, Atsushi Okawa, Daiki Kato: Constructing Behavioral State Machine using Interface Protocol Specification, 13th Asia Pacific Software Engineering Conference (APSEC'06), IEEE 2006

Eu.ModSt.3552 | Info [31] https://www.eulynx.eu/

Eu.ModSt.7072 | Info [32] Deliverable D10.2 Proposed extension of specification approach to meet needs of RCA, WP 10, X2Rail-5, 13.01.2022

EuModSt.7911 | Info | 10 Appendix A - Reference Tool Chain

Eu.ModSt.7916 | Info A tool chain that fully supports the EULYNX MBSE process is shown below and is intended to be a reference for the use of alternative tools. When using alternative tools, make sure that they have the same capabilities.

Eu.ModSt.302 | Info The EULYNX MBSE process is currently supported by a toolchain as illustrated in Figure 3553. It enables the creation of SysML specification models (Windchill Modeler), static checks for completeness, correctness, and

consistency (Windchill Reviewer) and simulation-based validation of the models (Windchill Modeler SySim and MS Visual Studio). A connection to IBM Rational DOORS (Windchill Integration for IBM Rational DOORS) enables
the representation of specification model elements in the form of atomic requirements in the requirements management tool. They can be transformed into the standardised Requirements Interchange Format (ReqIF) and
exchanged with suppliers using Windchill Requirements Connector.

© EULYNX Partners

Page 118 of 120

Modelling Standard

ID Type Requirements
Eu.ModSt.3553 | Info
Figure 3553 EULYNX Tool chain
Windchill Modeler
i a1k . 1 v VLM - PR ey s -= ® WEﬂdChi“
WIS Teamesce o as Integration IBM Rational DOORS
for IBM Rational =

re————— | DOORS

B S i Windchill
- : . x i Requirements
Connector

v s
g b T p— J——"
~ I HEEOD B8R
| O B || c—

=

Windchill Modeler Windchill Modeler SySim MS Visual Studio
Reviewer

Eu.ModSt.303 Head

10.1 Windchill Modeler

Eu.ModSt.304 Info

Windchill Modeler [14], an all-in-one integrated collaborative development tool suite, is used to create the EULYNX SysML specification models. It provides systems and software modelling and component-based
development targeted for technical systems and provides comprehensive notation support for the leading industry standards, including OMG SysML, OMG UML, UPDM (DoDAF and MODAF), OVM, data modelling, and
architectural frameworks.

Eu.ModSt.3554 | Head

10.2 IBM Rational DOORS

Eu.ModSt.3557 | Info

Requirements management tool IBM Rational DOORS is used to organise the specification contents in a format conforming to classical requirements management (atomic requirements with unique identifiers and allocated
bindingness). The requirements are structured in the form of DOORS-objects in the DOORS-modules representing the specification documents. The specification models created in the Windchill Modeler are represented as
surrogates in the DOORS-modules structured in the form of atomic requirements.

Eu.ModSt.3555 | Head

10.3 Windchill Integration for IBM Rational DOORS

Eu.ModSt.3558 | Info

Windchill Modeler is connected to the requirements management tool IBM Rational DOORS via the Windchill Integration for IBM Rational DOORS. This connection enables the creation and synchronisation of surrogates of
the specification models in the requirements management tool.

Eu.ModSt.3556 | Head

10.4 Windchill Requirements Connector

Eu.ModSt.3559 | Info

Windchill Requirements Connector is used to transform DOORS-modules into Requirements Interchange Format (ReqIF) and retransform ReqlF files into DOORS format.

Eu.ModSt.305 Head

10.5 Windchill Modeler SySim

© EULYNX Partners

Page 119 of 120

Modelling Standard

ID Type Requirements

Eu.ModSt.306 | Info Windchill Modeler SySim [15] is used together with Windchill modeler and MS Visual Studio to create executable specifications (virtual prototypes) from SysML specification models and validate their behaviours by means of
simulation-based testing. That way it is ensured that the corresponding specification model is consistent and formally correct without the need to focus on lower-level details such as code generation or target environments.

Eu.ModSt.307 | Info Furthermore, Windchill Modeler SySim allows the generation of appropriate and intuitive simulation graphics. Graphical components are automatically prepared in an MS Visual Studio toolbox, from which they can be
dropped onto a form to create each user interface, for a given simulation scenario. Predefined graphical components are also provided for the most common functions, such as input and output. Developing new graphical
components is also made easy, using the de-facto standard Microsoft .NET platform.

Eu.ModSt.308 | Head | 10.6 MS Visual Studio

Eu.ModSt.309 | Info MS Visual Studio is applied to create graphical user interfaces used to play through simulation scenarios and build executables from simulation code generated by Windchill Modeler SySim.

Eu.ModSt.310 | Head | 10.7 Windchill Modeler Reviewer

Eu.ModSt.311 | Info Windchill Modeler Reviewer [16] provides a quick way of reviewing items in a model using provided and optionally user-defined reviews. EULYNX SysML specification models can quickly be checked for completeness,
correctness and consistency using the corresponding reviews. Summary reports may be created that provide statistical analysis of review failures and metrics relating to items in a model. Furthermore, user-defined reviews
may be created to include in reports.

© EULYNX Partners Page 120 of 120

